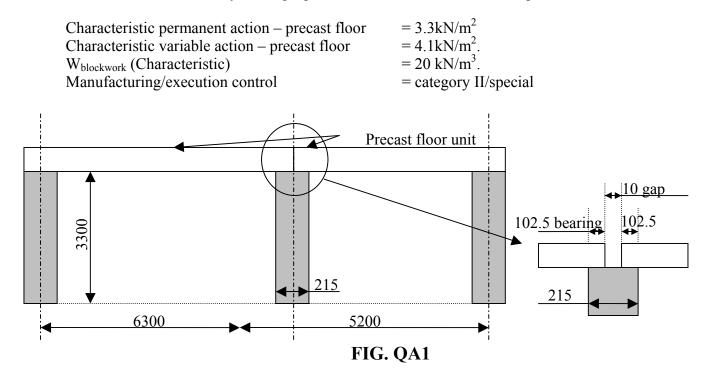
CORK INSTITUTE OF TECHNOLOGY INSTITIÚID TEICNEOLAÍOCHTA CHORCAÍ

Semester 2 Examinations 2009/10

Module Title: Structural Design

Module Code:	CIVL7018
School:	Building and Civil
Programme Title:	Bachelor of Engineering in Civil Engineering - Award
Programme Code:	CCIVL_7_Y3
External Examiner(Internal Examiner(s	
Instructions: Answ Use se	er <u>all</u> questions eperate answer books for each section
Duration: 2 Hou	rs
Sitting: Summ	ner 2010
 Requirements for the Candidates m 1. PP1990:2007 – 2. 'Approved Design A 3. PP7312:2002 - 	ay refer to 'Structural Eurocodes' Extract from Structural Eurocodes for students of structural design Aids' – (CIT Booklet)
Note to Candidates: Di	page check the P rogramme Title and the Module Title to ensure that you have receiv


Note to Candidates: Please check the Programme Title and the Module Title to ensure that you have received the correct examination paper. If in doubt please contact an Invigilator.

Section A – Reinforced Concrete & Masonry (Attempt <u>both</u> QA1 <u>and</u> QA2)

QA1 Masonry

(Total 20 Marks)

The figure below gives details of an internal wall which is supporting a precast concrete floor. The wall is constructed from group 1 units (440mm x 215mm x 100mm solid concrete blocks) with a mean compressive strength of $15N/mm^2$, laid on flat with M2 mortar. Using the design data given below check the suitability of the proposed block/ mortar combination specified.

QA1 to BS5628 & IS325 For Students Repeating Exams Only

(Total 20 Marks)

Fig. QA1 gives details of an internal wall which is supporting a precast concrete floor. The wall is constructed from 440mm x 215mm x 100mm solid concrete blocks laid on flat. The wall has a clear height of 3.3m. Determine a suitable strength of unit and mortar combination for the wall.

Characteristic dead load – precast floor Characteristic imposed load – precast floor W_{blockwork} (Characteristic) Manufacturing/construction control

QA2 Column

 $= 3.3 \text{kN/m}^2$ = 4.1 kN/m². = 20 kN/m³. = normal/special

(Total 30 Marks)

The attached drawing, Fig QA2, details the structural framing arrangement of a three storey building of in-situ reinforced concrete construction. The ground floor will comprise ground bearing concrete slab construction and no loading from this level will be carried by the structural framing. Lateral stability of the building will be provided independently of the main beam and column framing shown.

Column B3

Design column B3 from foundation to 1st floor. (Assume a pinned connection between column and its footing).

Design In	formation:

Exposure: <u>XC3</u>

Loading:

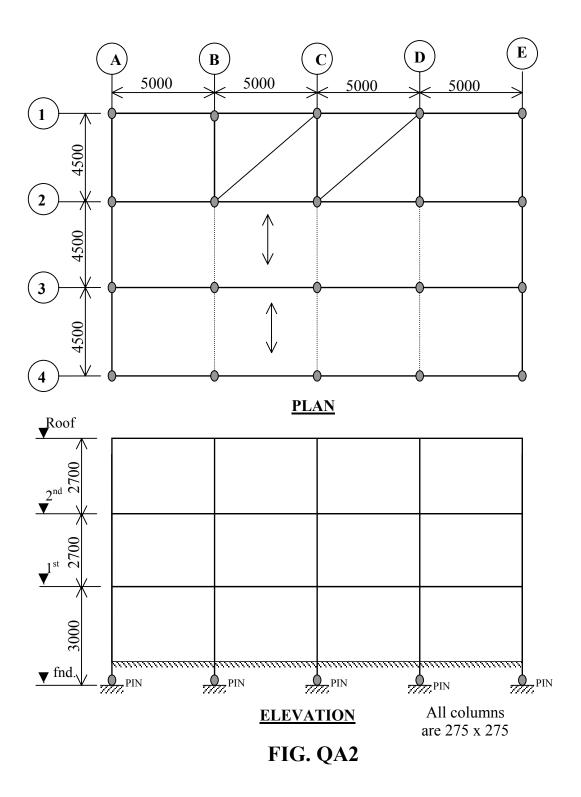
Specific	c weight of concrete	$= 25 \text{kN/m}^3$
	Characteristic permanent action* (ir Characteristic variable action	ncl. self wt. of slab and beams) = 9.8 kN/m ² of floor = 2.0 kN/m ² of
floor		
	Characteristic permanent action*(in Characteristic variable action	cl. self wt. of slab and beams) = 9.8 kN/m ² of floor = 3.0 kN/m ² of
floor		
Materia	<i>als:</i> Concrete:	C28/35
	Reinforcement:	$f_{vk} = 500 MPa$

QA2 to BS8110 For Students *Repeating Exams Only* (Total 30 Marks)

The attached drawing, Fig QA2, details the structural framing arrangement of a three storey building of in-situ reinforced concrete construction. The ground floor will comprise ground bearing concrete slab construction and no loading from this level will be carried by the structural framing. Lateral stability of the building will be provided independently of the main beam and column framing shown.

Column B3

Design column B3 from foundation to 1st floor. (Assume a pinned connection between column and its footing).


Design Information:

Exposure: moderate

Loading:

		-
Specifi	c weight of concrete	= 24kN/m ³
Roof:	Characteristic dead load*(incl. self wt. of slab and beams)	= 9.8kN/m ² of floor
	Characteristic imposed load	$= 2.0 \text{kN/m}^2$ of floor
Floor:	Characteristic dead load*(incl. self wt. of slab and beams)	= 9.8kN/m ² of floor
	Characteristic imposed load	$= 3.0 \text{kN/m}^2 \text{ of floor}$
Materi	uls: Concrete: C35	

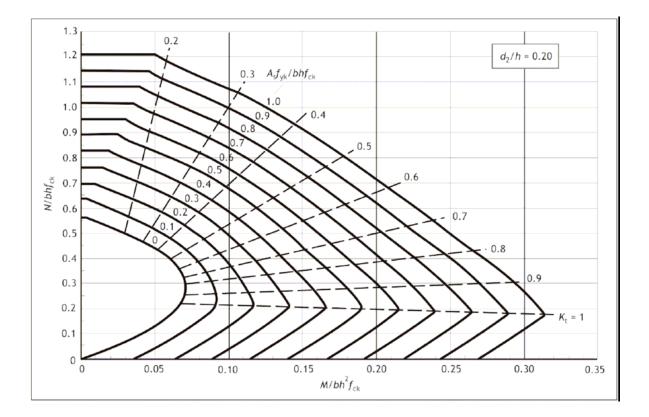
<u>Materials:</u>	Concrete:	C35
	Reinforcement:	$f_y = 460 \text{N/mm}^2$

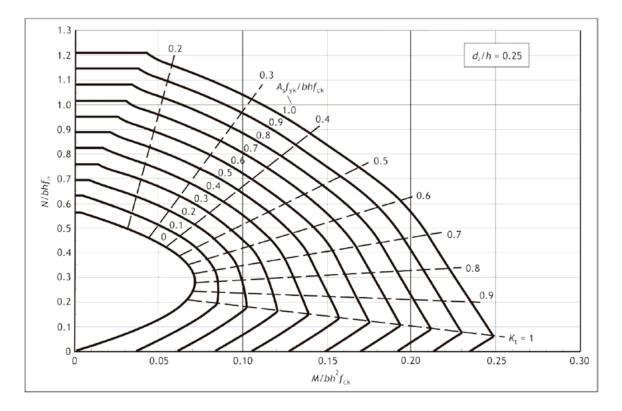
Masonry Unit		General	Thin Layer	Lightweight M	ortar of Density
		Purpose Mortar	Mortar (Bed Joint ≥ 0,5 mm and ≤ 3 mm)	$\begin{array}{c} 600 \leq \rho_{\rm d} \! \leq \! 800 \\ kg/m^3 \end{array}$	$\frac{800 < \rho_d \le 1}{300 \text{kg/m}^3}$
	Group 1	0,55	0,75	0,3	0,4
Class	Group 2	0,45	0,70	0,25	0,30
Clay	Group 3	0,35	0,50	0,20	0,25
	Group 4	0,35	0,35	0,20	0,25
Calairen Ciliarte	Group 1	0,55	0,80	\$	\$
Calcium Silicate	Group 2	0,45	0,65	\$	\$
	Group 1	0,55	0,80	0,45	0,45
Aggregate	Group 2	0,45	0,65	0,45	0,45
Concrete	Group 3	0,40	0,50	\$	\$
	Group 4	0,35	\$	\$	\$
Autoclaved Aerated Concrete	Group 1	0,55	0,80	0,45	0,45
Manufactured Stone	Group 1	0,45	0,75	\$	\$
Dimensioned Natural Stone	Group 1	0,45	\$	\$	\$

Class of Execution Control: Material Masonry made with: Units of Category I, Designed Mortar ^{B,D} Units of Category I, Prescribed Mortar ^{C,D}	4 ^{A)} (Special) 2,2	5 ^{A)} (Normal)
Masonry made with: Units of Category I, Designed Mortar ^{B,D}	2,2	
Units of Category I, Designed Mortar ^{B,D}	2,2	
	2,2	
Units of Category I, Prescribed Mortar ^{C,D}		2,5
	2,5	2,7
Units of Category II, Any Mortar ^{B,C,D,H}	2,7	3,0
Anchorage of reinforcing steel	2,5 ^F	2,7 ^E
Reinforcing steel and prestressing steel	1,15 ^F	1,15 ^E
Ancillary Components ^{G,I}	2,5	2,7
Lintels in accordance with IS EN 845-2	See NA to IS EN 845-2	See NA to IS EN 845-2
Equivalent Prescribed Morta		rials by
Volume)	(see Note)	

Compressive	Equivalent Prescr	ivalent Prescribed Mortars (Proportion of Materials by Volume) (see Note)			
Strength Class ^{A)}	Cement : Lime : Sand with or without Air Entrainment	Masonry Cement : Sand	Cement : Sand with or without Air Entrainment	Mortar Designation	
M12	$1:0 \text{ to } \frac{1}{4}:3$	Not suitable	Not suitable	(i)	
M6	$1:\frac{1}{2}:4$ to $4\frac{1}{2}$	$1:2\frac{1}{2}$ to $3\frac{1}{2}$	1 : 3 to 4	(ii)	
M4	1:1:5 to 6	1:4 to 5	1 : 5 to 6	(iii)	
M2	1:2:8 to 9	1 : 5½ to 6½	1:7 to 8	(iv)	

Determination of Normalised Strength from the Declared Mean Compressive Strength of a Masonry Unit

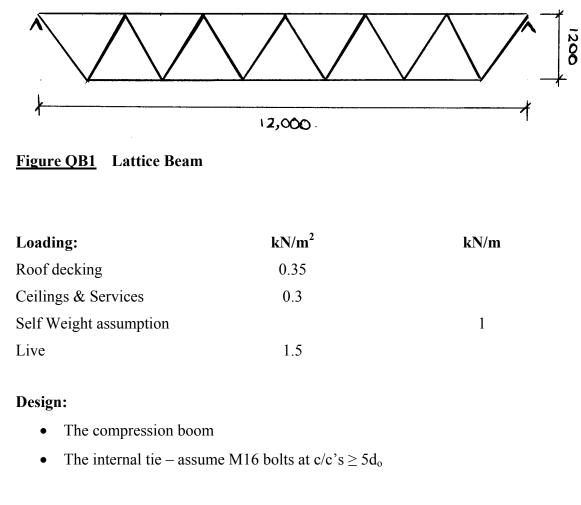

Conversion to an equivalent air dry conditioning regime


Type of unit	Conversion factor	
Clay	1.0	
Calcium Silicate	0.8	
Concrete	1.0	
Autoclaved Aerated Concrete	1.0	
Manufactured Stone (conditioned clause 7.3.2.)	1.0	For full information see BS EN 772-1
Manufactured Stone (conditioned clause 7.3.5.)	1.2	For full information see BS EN 772-1
Stone	0.8	

Shape Factors for Normalised Strength

Width mm (Historically called Thickness for some UK masonry units)

•		Inotoriou	ny canca				soon y an					
Height mm	50	75	90	100	115	125	140	150	200	215	225 ≥	250
40	0.80	0.75	0.72	0.70								
50	0.85	0.80	0.77	0.75	0.74	0.73	0.71	0.70				
65	0.95	0.90	0.87	0.85	0.82	0.80	0.77	0.75	0.70	0.69	0.68	0.65
100	1.15	1.08	1.03	1.00	0.97	0.95	0.92	0.90	0.80	0.79	0.78	0.75
140	1.27	1.22	1.18	1.16	1.13	1.11	1.08	1.06	0.96	0.95	0.94	0.91
150	1.30	1.25	1.22	1.20	1.17	1.15	1.12	1.10	1.00	0.99	0.98	0.95
190	1.42	1.37	1.34	1.32	1.29	1.27	1.24	1.22	1.12	1.11	1.10	1.07
200	1.45	1.40	1.37	1.35	1.32	1.30	1.27	1.25	1.15	1.14	1.13	1.10
215	1.48	1.43	1.40	1.38	1.35	1.33	1.30	1.28	1.18	1.16	1.15	1.12
≥250	1.55	1.50	1.47	1.45	1.42	1.40	1.37	1.35	1.25	1.22	1.20	1.15



Question B1

(30 marks)

A lattice beam is indicated in Figure QB1. It is to be used in the roof of a warehouse.

The roof deck is fixed directly to the top boom. The compression boom (top boom) is laterally restrained by the roof deck. The lattice beams will be positioned at 4.5m c/c's. Wind loading may be ignored.

Available structural steel sections:

203 x 102 x 36T;	102 x 127 x 11T;	80 x 80 x 10EA;	80 x 80 x 8EA
------------------	------------------	-----------------	---------------

Question B2

(20 marks)

Determine the size of joist capable of spanning 4.25m, supporting a floor consisting of 20mm T&G floorboards fixed to the joists. The joists are at 400mm c/c's and are simply supported at their ends on a wall plate on a 100mm masonry wall.

Refer to loading and design information in accordance to the appropriate code - EC5 and BS5268.

LOADING

kN/m²

Permanent Load:	T&G floorboards	0.1
	Plasterboard	0.12
	Skim	0.1
Variable Load: Domestic D		velling

Note: do not forget Self Weight

Available timber sections:

44 x 200 44 x 225

DESIGN INFORMATION for EC5

Durability:	Class 1
Loading Duration:	Medium and Long term
Material Data:	C16, $w_{timber} = 5 k N/m^3$
Modification factors:	$k_{cr} = 0.67$
	$K_{c,90} = 1.0$ for UDL loading
Deflection Limits:	$\omega_{inst} = L/350$
	$\omega_{\rm fin} = L/250$

FORMULAE for EC5

Deflection at mid-span for a simply supported beam with a uniformly distributed load of q (kN/m)

$$\begin{split} \omega_{inst} &= 5/384 \text{ qL}^4/\text{EI} + 1.2\text{qL}^2/8\text{AG} \\ \omega_{fin,g} &= \omega_{inst}(1+k_{def}) \\ \omega_{fin,g} &= \omega_{inst}(1+\psi_{21}k_{def}) \quad \text{where } \psi_{21} = 0.3 \\ \hline \textbf{DESIGN INFORMATION for BS5268} \end{split}$$

Durability: Dry Exposure

Loading Duration: Long term

Material Data: C16, $w_{timber} = 5kN/m^3$

FORMULAE for BS5268

Deflection at mid-span for a simply supported beam with a uniformly distributed load of w (kN/m)

 $\delta_b = 5/384 \ wL^4/EI$

Deflection due to shear

 $\delta_s = 1.2 M/GA$ where G = E/16

					able 1-							-							
	1	Poplar and softwood species												Hardwood species					
		C14	C16	C18	C20	C22	C24	C27	C30	C35	C40	C45	C50	D30	D35	D40	D50	D60	D70
Strength properties (in N/r	nm²)		I						I		I								
Bending	(m.t	14	16	18	20	22	24	27	30	35	40	45	50	30	35	40	50	60	70
Tension parallel	ί _{τοκ}	8	10	11	12	13	14	16	18	21	24	27	30	18	21	24	30	36	42
Tension perpendicular	É1.20,2	0,4	0,5	0,5	0,5	0,5	0,5	0,6	0,6	6,0	0,6	0,6	0,6	0,6	6,0	0,6	0,6	0,6	6,0
Compression parallel	(cox	16	17	18	19	20	21	22	23	25	26	27	29	23	25	26	29	32	34
Compression percendicular	(caux	2,0	2,2	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,1	3,2	8,0	8,4	8,8	9,7	10,5	13,5
Shear	Év.K	1,7	1.8	2.0	2.2	2,4	2,5	2.8	3.0	3,4	3,8	3,8	3,8	3,0	3,4	3,8	4.6	5,3	6,0
Stiffness properties (in kN	/mm²)																		
Mean modulus of elasticity parallel	E _{0,meen}	7	8	9	9,5	10	11	11.5	12	13	14	15	16	10	10	11	14	17	20
5% modulus of elasticity parallel	Eq.pi	4,7	5.4	6.0	6,4	6,7	7,4	7.7	8,0	8,7	9,4	10.0	10,7	8.0	8,7	9,4	11.8	14,3	16,8
Mean modulus of elasticity perpendicular	E _{90,mean}	0,23	0,27	0.30	0,32	0,33	0,37	0.38	0,40	0,43	0,47	0,50	0,53	0.64	0,69	0,75	0,93	1,13	1,33
Mean shear modulus	G _{mean}	0,44	0,5	0,56	0,59	0,63	0,69	0,72	0,75	0,81	0,88	0,94	1,00	0,60	0,65	0,70	0,88	1,06	1,25

Table 1 — Strength classes - Characteristic values