## **Design Speed Related Parameters**

1.9 The Design Speed bands 120, 100, 85 km/h etc. dictate the minimum geometric parameters for the design according to Table 3. This shows Desirable Minimum values and values for certain Design Speed steps below Desirable Minimum. Desirable Minimum values represent the comfortable values dictated by the Design Speed

Table 3: Design Speed Related Parameters

| DESIGN SPEED (km/h)                                       | 120  | 100  | 85   | 70   | 60         | 50  | V <sup>2</sup> /R |
|-----------------------------------------------------------|------|------|------|------|------------|-----|-------------------|
| STOPPING SIGHT DISTANCE m                                 |      |      |      |      |            |     |                   |
| Desirable Minimum Stopping Sight Distance                 | 295  | 215  | 160  | 120  | 90         | 70  |                   |
| One Step below Desirable Minimum                          | 215  | 160  | 120  | 90   | 70         | 50  |                   |
| Two Steps below Desirable Minimum                         | 160  | 120  | 90   | 70   | 50         | 50  |                   |
| HORIZONTAL CURVATURE m                                    |      |      |      |      |            |     |                   |
| Minimum R* without elimination of Adverse Camber and      |      |      |      |      |            |     |                   |
| Transitions                                               | 2880 | 2040 | 1440 | 1020 | 720        | 510 | 5                 |
| Minimum R* with Superelevation of 2.5%                    | 2040 | 1440 | 1020 | 720  | 510        | 360 | 7 07              |
| Minimum R with Superelevation of 3.5%                     | 1440 | 1020 | 720  | 510  | 360        | 255 | 10                |
| Desirable Minimum R with Superelevation of 5%             | 1020 | 720  | 510  | 360  | 255        | 180 | 14 14             |
| One Step below Desirable Min R with Superelevation of 7%  | 720  | 510  | 360  | 255  | 180        | 127 | 20                |
| Two Steps below Desirable Min R with Superelevation of 7% | 510  | 360  | 255  | 180  | 127        | 90  | 28 28             |
| VERTICAL CURVATURE – CREST                                |      |      |      |      |            |     |                   |
| Desirable Minimum Crest K Value                           | 182  | 100  | 55   | 30   | 17         | 10  |                   |
| One Step below Desirable Min Crest K Value                | 100  | 55   | 30   | 17   | 10         | 6.5 |                   |
| Two Steps below Desirable Min Crest K Value               | 55   | 30   | 17   | 10   | 6.5        | 6 5 |                   |
| VERTICAL CURVATURE – SAG                                  |      |      |      |      |            |     |                   |
| Desirable Minimum Sag K Value                             | 53   | 37   | 26   | 20   | 13         | 9   |                   |
| One Step below Desirable Min Sag K Value                  | 37   | 26   | 20   | 13   | 9          | 6.5 |                   |
| Two Steps below Desirable Min Sag K Value                 | 26   | 20   | 13   | 9    | 6.5        | 6.5 |                   |
| OVERTAKING SIGHT DISTANCES                                |      |      |      |      |            |     |                   |
| Full Overtaking Sight Distance FOSD m                     | N/A  | 580  | 490  | 410  | 345        | 290 |                   |
| FOSD Overtaking Crest K Value                             | N/A  | 400  | 285  | 200  | 343<br>142 | 100 |                   |

## Notes

The V2/R values simply represent a convenient means of identifying the relative levels of design parameters, irrespective of Design Speed

K Value = curve length divided by algebraic change of gradient (%). See Paragraph 4.5.

January 2005 1/4

<sup>\*</sup> Not to be used in the design of single carriageways (see Paragraphs 7.25 to 7.30).

# 1. DESIGN SPEED

### General

The road alignment shall be designed so 1.1 as to ensure that standards of curvature, visibility, superelevation, etc. are provided for a Design Speed which shall be consistent with the anticipated vehicle speeds on the road. relatively straight alignment in flat country will generate higher speeds, and thus produce a higher Design Speed, than a more sinuous alignment in hilly terrain or amongst dense land use constraints There is, therefore, always an inherent economic trade-off between construction and environmental costs alternative alignments of different Design Speeds, and their user benefits.

### **Factors Affecting Speed**

1.2 Speeds vary according to the impression of constraint that the road alignment and layout impart to the driver This constraint can be measured by the three factors given in Paragraphs 1.3 to 1.5.

1.3 <u>Alignment Constraint, Ac</u>: This measures the degree of constraint imparted by the road alignment, and is measured by:

Dual Carriageways: Ac = 6.6 + B/10

Single Carriageways: Ac = 12 - VISI/60 + 2B/45

where:

B = Bendiness (total angle the road turns through), degrees/km;

VISI = Harmonic Mean Visibility, m (see Annex A)

1.4 <u>Layout Constraint, Lc</u>: This measures the degree of constraint imparted by the road cross section, verge width and frequency of junctions and accesses. Table 1 shows the values of Lc relative to cross section features and density of access, expressed as the total number of junctions, laybys and direct accesses (other than single field accesses) per km (see TD 41), summed for both sides of the road, where:

L = Low Access numbering up to 5 per km;

M = Medium Access numbering 6 to 8 per km;

H = High Access numbering 9 or more per km.

Table 1: Layout Constraint, Lc km/h

| Road Type                                |       | S2    |      |           |         |              | WS2   |                            | D2AP                           |         |                            | D3AP    | D2M                                          |          | D3M     |    |
|------------------------------------------|-------|-------|------|-----------|---------|--------------|-------|----------------------------|--------------------------------|---------|----------------------------|---------|----------------------------------------------|----------|---------|----|
| Carriageway<br>Width (ex<br>hard strips) | 6     |       |      | Du<br>7 0 |         | Dual<br>7 5m |       | Dual<br>10.5m or<br>11.25m | Dual Dual 7 0m 7 5m            |         | Dual<br>10.5m or<br>11.25m |         |                                              |          |         |    |
| Degree of<br>Access and<br>Junctions     | Н     | М     | М    | Н         | М       | L            | М     | L                          | М                              | L       | М                          | L       | L                                            | L        | L       | L. |
| With hard shoulders                      |       |       |      |           | 21      | 19           | 17    | 15                         | 10                             | 9       | 8                          | 7       | 5                                            | 5        | 4       | 0  |
| Without hard                             | shoul | ders: |      |           |         |              |       |                            |                                |         |                            |         |                                              |          |         |    |
| With 3 0m<br>Verge                       | (29)  | (26)  | 25   | 23        | (23)    | (21)         | (19)  | (17)                       | (12)                           | (11)    | (10)                       | (9)     | (6)                                          |          |         |    |
| With 1 5m<br>Verge                       | (31)  | (28)  |      | (27)      |         |              | (25)  | (23)                       | (): Non-standard cross-section |         |                            |         |                                              |          |         |    |
| With 0 5m<br>Verge                       | (33)  | (30)  | widt | h. In t   | the lin | nited c      | ircum | stance                     | s for the                      | eir use | descr                      | ibed ii | geway roads<br>n this docun<br>raint of 15 - | nent, De | sign Sp |    |

January 2005 1/1

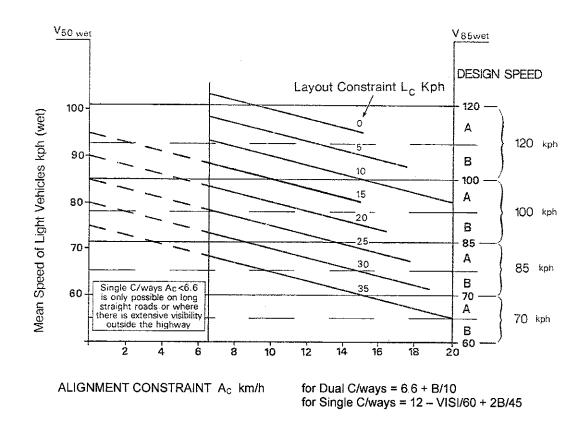



Figure 1: Selection of Design Speed (Rural Roads)