Cork Institute of Technology
 Higher Certificate in Engineering in Building Services Engineering - Award

(NFQ - Level 6)
Autumn 2006

Building Services and Equipment II

(Time: 3 Hours)

Instructions
Answer FIVE questions,
All questions carry equal marks.

Examiners: Mr. William Bateman Dr. Neil Hewitt Mr. Declan Leonard

	Reference Material to be provided.	Ouestion	Location
1.	Table 1. 2. 3and 4 - Hot and Cold Water Pipe work Design	O 1	(attached)
2.	CIBSE Table C4.18 Page C4-40 - Water $10^{\circ} \mathrm{C}$ Copper Pipe.	O 1	(attached)
3.	Hot and Cold Water design Spreadsheet	O 1	(attached)
4.	CIBSE Table C4.11. Page 4-15 - Water $75^{\circ} \mathrm{C}$ Med Grade Steel	O 4	(attached)
5.	CIBSE Table C4.36. -Velocity press loss factors.	O 4	(attached)
6.	Ductwork Design Sheet	O 5	(attached)
7.	CIBSE Fig C4.2 - Flow of Air in Round Ducts	O 5	(attached)
8.	CIBSE Table C4.33 - Velocity Pressure in Pa v's Velocity m/s	O 5	(attached)
9.	CIBSE Table C4.35 - Page 1\&2 - Velocity Press Loss Factors	O 5	(attached)

Q1 (a) Fig 1.1 shows the cold water pipe work layout for a changing room area within a school. Determine the most economical diameters of the copper distribution pipes labelled AB, BC, etc. Assume a continuous demand due to peak usage.
Ensure you put your name on the sheet and attach the sheet to your answer book.
[15 marks]

(b) Having completed your detailed design it should show that insufficient head pressure is available to carry the desired volume of water to user point H .
Calculate the shortfall in head pressure available (Pa) and suggest the minimum changes required to correct such a fault.

Q2 (a) Fig 2.1 below shows a section of a wall. Using the data provided on the sketch calculate the thermal transmission (U Value) for the wall.
Table 2 - Rsi, Table 3 - Rso and Table 4 - Ra attached as reference.

FIG 2.1
U - VALUE

OUTSIDE SURFACE
HIGH EMISSIVITY SHELTERED LOCATION

50 mm AIR GAP HIGH EMISSIVITY

Table 2 - Rsi	Internal surface resistances $\boldsymbol{R}_{\mathbf{s}}$ in $\mathbf{m}^{\mathbf{2} \mathbf{0}} \mathbf{C} / \mathbf{W}$		
Building element	Heat flow	Surface resistance $\left(\mathrm{m}^{20} \mathrm{C} / \mathrm{W}\right)$	
		High Emissivity	Low
Walls	Horizontal	0.123	0.304
Ceilings, floor, flat	Upwards	0.106	0.218
Ceilings and floors	Downwards	0.150	0.562

Table 3 - Rso	External surface resistances \boldsymbol{R}_{50} in m ${ }^{\mathbf{2 0}} \mathbf{C} / \mathbf{W}$			
Building	Emissivity	Surface resistance for stated exposure		
		Sheltered	Normal	Severe
Wall	High	0.08	0.055	0.03
	Low	0.11	0.067	0.03
Roof	High	0.07	0.045	0.02
	Low	0.09	0.053	0.02

Table 4-Ra	Unventilated Air Gap resistance $\mathbf{R}_{\mathbf{a}}$ in $\mathbf{m}^{\mathbf{2 0} \mathbf{C} / \mathbf{W}}$		
Air Space Thickness	Surface Emissivity	Thermal resistance $\left(\mathrm{m}^{20} \mathrm{C} / \mathrm{W}\right)$	
		Heat flow Horizontal	Heat flow
		or Upwards	Downwards
5 mm	High	0.11	0.11
	Low	0.18	0.18
	High	0.18	0.21
	Low	0.35	1.06

(b) Fig 2.2 shows the plan of an office on the second floor of a four storey building. The other floors have the same construction and heating design conditions.
From the data given and using convection heating, calculate the total rate of heat loss for this office.

Fig 2.2 Heat Loss
Corridor Temp 16 DegC

Q3 (a) A two pipe LPHW central heating system is shown in Fig 3.1. The pipe work is medium grade steel. The heat output from each radiator does not allow for a fixed percentage heat loss from the insulated pipe work supplying those radiators.
Under the design conditions shown, find the following for pipe sections 1,2 and 3.
(i) Pipe diameter, (ii) Pressure drop per meter $-\mathrm{dP}_{1}$, (iii) Length equivalent factor -1_{e}.

NB: it is not necessary to compare the actual heat loss from the insulated pipe work with the theoretical value estimated.
Table C4.12, Page C4-15, "Medium Grade Steel Water at $75^{\circ} \mathrm{C}$ attached for reference.
Table C3.14 - heat emission from horizontal steel pipe - Not required.
[10 marks]

(b) For the same LPHW circuit find the effective pipe length of the straight pipe plus fittings for all sections. From this find the total pressure drop on the index run.
Use this to derive a pump duty for the circulation pump in this circuit.
Bends are welded mild steel elbows and isolation valves are gate valves.
Table C4.36 - "Velocity Pressure Loss factors" attached for reference.

Q4 (a) The production area and associated rooms shown in Fig 4.1 below are to be supplied with air conditioned air through the supply air duct shown. The air is supplied from point A to supply air grilles at $\mathrm{B}, \mathrm{C}, \mathrm{D}$ and E . There are no change in levels between A and E .

Using the design criteria provided on the sketch and the ductwork design sheet attached, establish the most economical circular duct size for the layout shown in Fig 4.1.

Include all relevant information on the ductwork design sheet.
Ensure you put your name on the sheet and attach the sheet to your answer book.
Fig C4.2, Table C4.33 and Table C4.35 Page 1\&2 attached as ref.

FIG 4.1 - DUCTWORK DESIGN
(b) Fig 4.1 shows fire dampers on each of the dividing walls between the rooms. With the aid of a neat sketch show the details of two different types of fire dampers commonly used in air conditioning ducting.

Q5 (a) Air conditioning is used to control the temperature, humidity, cleanliness and distribution of air within the air conditioned space. Filters are used in controlling the cleanliness of the air. Briefly describe three types of air filters that may be found in air conditioning systems indicating how each works.
[6 marks]
(b) Draw a schematic of a "split system" packaged air conditioning unit in room cooling mode, complete with compressor, heating and cooling coils, reversing valve, expansion device, fans and direction of flow of the refrigerant.
Indicate on the schematic the state of the refrigerant immediately after the expansion device, i.e, High Pressure or Low Pressure, Liquid or gas.

Use the Psychrometric Chart attached to plot and determine the following conditions. NB: It is not necessary to attach the chart to your answer book.
(c) In winter, cold air at a dry bulb of 5 Deg C and 60% relative humidity enters a building through a heater battery and is heated to a dry bulb temperature of 20 Deg C , without adding moisture. From the Psychrometric chart find,
(c) i. The Wet Bulb temperature of the incoming air.
(c) ii The Relative Humidity of the heated air.
(d) The air in a room has a dry bulb temperature of 22 Deg C and a wet bulb temperature of 16 Deg C. From the Psychrometric chart find,
(d) i The Relative Humidity of the air.
(d) ii The temperature of the walls when condensation will occur.
(e) Air enters an Air Handling unit at a dry bulb temperature of 25 Deg C and 70% relative humidity. The final condition required is a dry bulb temperature of 20 Deg C and 50% relative humidity. From the Psychrometric chart find,
(e) i The reduction in moisture content of the air.
(e) ii The lowest temperature the air must be cooled to in order to achieve the reduced moisture content.

Q6. (a) With the aid of a neat sketch show all the equipment associated with a typical "wet" sprinkler system for a two storey building.
[6 marks]
(b) Using a neat sketch show the general arrangement of an on site automatic sprinkler pump system including the water storage and water supply.
[6 marks]
(c) Outline the type of portable fire extinguishers you would recommend for use on fires involving four of the following materials :[4 marks]

No.	(i)	(ii)	(iii)	(iv)	(v)
Class	A	B	C	D	E
Fire Type	 textiles	Petroleum	Gases	Inflammable metals	Electrical

(d) Briefly explain how each type of extinguisher described above is effective in fighting the relevant fire.

Q7 (a) Global warming is a phenomenon attributed to increased industrialisation of our planet. With the aid of a neat sketch describe how global warming has come about. [10 marks]
(b) Air pollution is a major contributor to global warming. Describe three types of air pollution, their sources, effects on humans and vegetation, and possible control measures to help reduce their level.
[10 marks]
Tables 1, 2, 3 and 4 - Hot and Cold Water Pipework Design.
Frictional resistance of Fittings expressed in Equivalent Pipe Lengths

$\begin{gathered} \text { Copper } \\ \hline \text { Nominal } \\ \text { outside } \\ \text { diameter } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	Galvanised Steel					
	Equivalent length Meter run of pipe		Nominal outside diameter (mm)	Equivalent length Meter run of pipe		Tee
15	0.5	0.6	15	0.5	0.4	1.2
22	0.8	1.0	20	0.6	0.5	1.4
28	1.0	1.5	25	0.7	0.6	1.8
35	1.4	2.0	32	1.0	0.7	2.3
42	1.7	2.5	40	1.2	1.0	2.7
54	2.3	3.5	50	1.4	1.2	3.4
62	3.0	4.5	65	1.7	1.3	4.2
76	3.4	5.8	80	2.0	1.6	5.3
108	4.5	8.0	100	2.7	2.0	6.8

Table 1
Loading Units for various types of Sanitary Applications.

Location / Appliance	Loading Units
Dwellings and Flats	
W.C flushing cistern	2
Wash basin	1.5
Bath	10
Sink	$3-5$
Offices	2
W.C flushing cistern	1.5
Wash basin (distributed use)	3
Wash basin (concontrated use)	2
Schools and Industrial Buildings	3
W.C flushing cistern	3
Wash basin	22
Showers (with spray rose)	
Public bath	

[^0]Table 4.18 Flow of water at $10^{\circ} \mathrm{C}$ in copper pipes

$q_{\epsilon}-$ mass flow yate	$\mathrm{kg} . \mathrm{s}^{-1}$
$c=$ velocity	$\mathrm{m} . \mathrm{s}^{-1}$
$\Delta y!=$ pressure drop per unit length	$\mathrm{Pa} . \mathrm{m}^{-1}$

$6=$ equivalent length of a component for $\zeta=1$
${ }^{*}(R e)=2000$
$\dagger(R e)=3000$

$\Delta p / 6$	${ }^{c}$	12 mm		15 mm		22 mm		28 mm		35 mm		42 mm		c	$\Delta p, l$
		$9 m$	1.	q_{0}	i_{2}	q_{0}	1.	80	6	q^{2}	1.	q_{0}	1.		
50		0.013	0.2	0.026	0.3	0.070	0.5	0.144	0.7	0.263	1.0	0.447	1.3		50
55		0.014	0.2	0.027	0.3	0.074	0.5	0.152	0.7	0.278	1.0	0.472	1.3		55
60		0.015	0.2	0.028	0.3	0.078	0.5	0.160	0.7	0.292	1.0	0.496	1.3		60
65		0.017	0.3	0,029	0.3	0.082	0.5	0.168	0.7	0.306	1.0	0.520	1.4		65
70	0.2	0.018	0.3	0.030	0.3	0.086	0.5	0.175	0.8	0.319	1.0	0.542	1.4		70
75		0.019	0.3	0.031	0.3	0.089	0.5	0.182	0.8	0.332	1.1	0.564	1.4		75
80		0.020	0.3	0.032	0.3	0.093	0.5	0.189	0.8	0.345	1.1	0.585	1.4		80
85		0.022**	0.3	0.033	0.3	0.096	0.5	0.196	0.8	0.357	1.1	0.606	1.4	0.5	85
90		0.019	0.2	0.034	0.3	0.099	0.5	0.203	08	0.369	1.1	0.626	1.4		90
95		0.022	0.2	0.035	0.3	0.103	0.5	0.209	0.8	0.381	1.1	0.646	1.4		95
100		0.020	0.2	0.036	0.3	0.106	0.5	0.216	0.8	0.392	1.1	0.665	1.5		100
110		0.021	0.2	0.038	0.3	0.112	0.6	0.228	0.8	0.414	1.3	0.702	1.5		110
120		0.022	0.2	0.040	0.3	0.117	0.6	0.239	0.8	0.435	1.1	0.738	1.5		120
130		0.023	0.2	$0.041+$	0.3	0.123	0.6	0.251	0.8	0.456	1.1	0.772	1.5		130
140		0.024	0.2	0.043	0.3	0.128	0.6	0.262	0.8	0.475	1.2	0.805	1.5		140
150		0.025	0.2	0.045	0.3	0.134	0.6	0.272	0.8	0.494	1.2	0.838	1.5		150
160		0.026	0.2	0.047	0.3	0.139	0.6	0.283	0.9	0.513	1.2	0.869	1.6		160
170		0.027	0.2	0.048	0.3	0.144	0.6	0.293	0.9	0.531	1.2	0.899	1.6		170
180	0.3	0.027	0.2	0.050	0.3	0.149	0.6	0.302	0.9	0.549	1.2	0.929	1.6		180
190		0.028	0.2	0.052	0.3	0.153	0.6	0.312	0.9	0.566	1.2	0.958	1.6		190
200		0.029	0.2	0.053	0.3	0.158	0.6	0.321	0.9	0.583	1.2	0.986	1.6		200
225		0.031	0.2	0.057	0.3	0.169	0.6	0.344	0.9	0.623	1.2	1.05	1.6		225
250		$0.032+$	0.2	0.061	0.3	0.180	0.6	0.365	0.9	0.662	1.3	1.12	1.6		250
275		0.034	0.2	0.064	0.4	0.190	0.6	0.385	0.9	0.698	1.3	1.18	1.7	1.0	275
300		0.036	0.3	0.067	0.4	0.200	0.6	0.405	0.9	0.734	1.3	1.24	1.7		300
325		0.037	0.3	0.071	0.4	0.209	0.7	0.424	1.0	0.768	1.3	1.30	1.7		325
350		0.039	0.3	0.074	0.4	0.218	0.7	0.442	1.0	0.801	1.3	1.35	1.7		350
375		0.041	0.3	0.077	0.1	0.227	0.7	0.460	1.0	0.833	1.3	1.41	1.7		375
400		0.042	0.3	0.080	0.4	0.236	0.7	0.477	1.0	0.864	1.3	1.46	1.8		400
425		0.044	0.3	0.083	0.4	0.244	0.7	0.494	1.0	0.894	1.3	1.51	1.8		425
450	0.5	0.045	0.3	0.085	0.4	0.252	0.7	0.511	1.0	0.924	1.4	1.56	1.8		450
475		0.047	0.3	0.088	0.4	0.260	0.7	0.527	1.0	0.952	1.4	1.61	1.8		475
500		0.048	0.3	0.091	0.4	0.268	0.7	0.542	1.0	0.980	1.4	1.66	1.8		500
550		0.051	0.3	0.096	0.4	0.283	0.7	0.572	1.0	1.04	1.4	1.75	1.8		550
600		0.054	0.3	0.101	0.4	0.297	0.7	0.601	1.0	1.09	1.4	1.83	1.8	1.5	600
650		0.056	0.3	0.106	0.4	0.311	0.7	0.629	1.0	1.14	1.4	1.92	1.9		650
700		0.059	0.3	0.110	0.4	0.324	0.7	0.656	I.I	1.19	1.4	2.00	1.9		700
750		0.061	0.3	0.115	0.4	0.337	0.7	0.682	1.1	1.23	1.4	2.08	1.9		750
800		0.063	0.3	0.119	0.4	0.350	0.7	0.708	1.1	1.28	1.5	2.16	1.9		800
850		0.066	0.3	0.123	0.4	0.362	0.8	0.732	1.1	1.32	1.5	2.23	1.9		850
900		0.068	0.3	0.127	0.4	0.374	0.8	0.757	2.1	1.37	1.5	2.30	1.9		900
950		0.070	0.3	0.131	0.4	0.386	0.8	0.780	1.1	1.41	1.5	2.37	1.9		950
1000		0.072	0.3	0.135	0.4	0.398	0.8	0.803	1.1	1.45	1.5	2.44	2.0	2.0	1000
1100		0.076	0.3	0.143	0.4	0.420	0.8	0.847	1.1	1.53	1.5	2.58	2.0		1100
1200		0.080	0.3	0.150	0.4	0.441	0.8	0.850	1.1	1.61	1.5	2.71	2.0		1200
1300		0.084	0.3	0.157	0.5	0.461	0.8	0.931	1.1	1.68	1.6	2.83	2.0		1300
1400		0.088	0.3	0.164	0.5	0.481	0.8	0.971	1.2	1.75	1.6	2.95	2.0		1400
1500	1.0	0.091	0.3	0.171	0.5	0.500	0.8	1.00	1.2	1.82	1.6	3.06	2.1		1500
1600		0.095	0.3	0.177	0.5	0.519	0.8	1.05	1.2	1.89	1.6	3.18	2.1		1600
1700		0.098	0.3	0.184	0.5	0.537	0.8	1.08	1.2	1.95	1.6	3.29	2.1		1700
1800		0.101	0.3	0.190	0.5	0.555	0.8	1.12	1.2	2.02	1.6	3.39	2.1		1800
1900.		0.104	0.3	0.196	0.5	0.572	0.8	1.15	1.2	2.08	1.6	3.50	2.1		1900
2000		0.108	0.3	0.201	0.5	0.589	0.8	1.19	1.2	2.14	1.6	3.60	2.1	3.0	2000
2250		0.115	0.4	0.215	0.5	0.629	0.9	1.27	1.2	2.28	1.7	3.84	2.2		2250
2500		0.122	0.4	0.229	0.5	0.668	0.9	1.35	1.2	2.42	1.7	4.07	2.2		2500
2750		0.129	0.4	0.242	0.5	0.705	0.9	1.42	1.3	2.55	1.7	4.29	2.2		2750
3000	1.5	0.136	0.4	0.254	0.5	0.740	0.9	1.49	1.3	2.68	1.7	4.51	2.2		3000
3250		0.142	0.4	0.266	0.5	0.774	0.9	1.56	1.3	2.80	1.7	4.71	2.2		3250
3500		0.148	0.4	0.277	0.5	0.807	0.9	1.62	1.3	2.92	1.7	4.91	2.3	4.0	3500
3750		0.154	0.4	0.288	0.5	0.839	0.9	1.69	1.3	3.03	1.8	5.10	2.3		3750

Hot and Cold Water Pipework Design Spreadsheet
Pipework Description.
Student / Project name

Effective	pe lengt							
$\begin{aligned} & \hline \text { Pipe } \\ & \text { Section } \end{aligned}$	Design Flow !/s	$\begin{aligned} & \text { Est Pipe } \\ & \text { diam } 1 \mathrm{~m} / \mathrm{s} \end{aligned}$	Measured length (m)	No. of T's \times Equiv L	No. elbow x Equiv L	No.Valve \times Equiv L	No.Taps x Equiv L	$\begin{aligned} & \text { Effective } \\ & \text { Length } \end{aligned}$

Critical Run								
Pipe	Effective	Head Available			Less residual	Total dP (Pa)	MaxdP/m	
Section	Length (m)	Meters	kPa	Pa	Head req'd	Allowable	allowable	Run (min)

Pipe section sizing								
Pipe Section	Effective Length (m)	Design Flow I/s	Chosen Pipe diam	Relevant dP (Pa/m)	dP for this section	Cumulative dP this run	Avaliable Head (Pa)	Confirm diam

Table 4.11 Flow of water at $75^{\circ} \mathrm{C}$ in medium grade steel pipes - contikued

```
g}=\mathrm{ mass flow rate }\textrm{kg}\cdot\mp@subsup{\textrm{s}}{}{-1
lrram
tc= equivalent length of a component 
```


MEDIUM GRADE STEEL

 WATER AT $75^{\circ} \mathrm{C}$

TABLE C4.36. Velocity pressure loss factors for pipe fittings.

Notes to Table C4.36.

Convergent flow at junctions
Where the velocity of flow in one branch of a tee, at a converging junction, is high relative to the velocity in the other, the pressure loss factor for the latter may be negative due to the injection effect.
Tapers
Where the included angle is 10° o: less, take a factor of 0.2 for an enlargement and iencre for a contraction.

Valves
Individual designs may show wide variations over the values tabulated.
The resistance to flow through a cest fron column radiator with
S columas may be approximated by: $p=5720 \mathrm{M}^{2} S^{0.25}$
Specialist equipment
Manufacturers' data should be consulted in those cases.

Fig. C4.2. Flow of air in round ducts.

Table C4.33. Velocity pressure in Pa against velocity in m / s.

[^1]TABLE C4.35.Velocity pressure loss factors for duct fittings - continued

TABLE C4.35.Velocity pressure loss factors for duct fittings.

[^0]: It should be noted that certain sanitay pliances suel with spray taps, umbrella taps, shower nozzles or simiar fitings requie

 Table 2
 Recommended minimum flow rates for

[^1]:

