Cork Institute of Technology

Higher Certificate in Engineering in Building Services Engineering – Award

(NFQ – Level 6)

Autumn 2006

Building Services and Equipment II

(Time: 3 Hours)

Instructions Answer FIVE questions, All questions carry equal marks. Examiners: Mr. William Bateman Dr. Neil Hewitt Mr. Declan Leonard

	Reference Material to be provided.	Ouestion	Location
1.	Table 1, 2, 3and 4 – Hot and Cold Water Pipe work Design	01	(attached)
2.	CIBSE Table C4.18 Page C4-40 – Water 10 ⁰ C Copper Pipe.	01	(attached)
3.	Hot and Cold Water design Spreadsheet	Q1	(attached)
4.	CIBSE Table C4.11, Page 4-15 - Water 75 ^o C Med Grade Steel	O4	(attached)
5.	CIBSE Table C4.36Velocity press loss factors.	Q4	(attached)
6.	Ductwork Design Sheet	Q5	(attached)
7.	CIBSE Fig C4.2 – Flow of Air in Round Ducts	O5	(attached)
8.	CIBSE Table C4.33 – Velocity Pressure in Pa v's Velocity m/s	Q5	(attached)
9.	CIBSE Table C4.35 – Page 1&2 – Velocity Press Loss Factors	05	(attached)

Q1 (a) Fig 1.1 shows the cold water pipe work layout for a changing room area within a school. Determine the most economical diameters of the copper distribution pipes labelled AB, BC, etc. Assume a continuous demand due to peak usage.

Ensure you put your name on the sheet and attach the sheet to your answer book.

[15 marks]

- (b) Having completed your detailed design it should show that insufficient head pressure is available to carry the desired volume of water to user point H.
 Calculate the shortfall in head pressure available (Pa) and suggest the minimum changes required to correct such a fault. [5 marks]
- Q2 (a) Fig 2.1 below shows a section of a wall. Using the data provided on the sketch calculate the thermal transmission (U Value) for the wall.

Table 2 – Rsi, Table 3 – Rso and Table 4 – Ra attached as reference.[8 marks]

Table 2 - Rsi	Internal surface resis	stances <i>R_{si}</i> in m ²⁰ C / W	/
Building element	Heat flow	Surface resistance (m ²	²⁰ C / W)
		High Emissivity	Low
Walls	Horizontal	0.123	0.304
Ceilings, floor, flat	Upwards	0.106	0.218
Ceilings and floors	Downwards	0.150	0.562

Table 3 - Rso	External sur	face resistances R _{so}	in m ²⁰ C / W	
Building	Emissivity	Surface resistanc	e for stated expos	ure
		Sheltered	Normal	Severe
Wall	High	0.08	0.055	0.03
	Low	0.11	0.067	0.03
Roof	High	0.07	0.045	0.02
	Low	0.09	0.053	0.02

Table 4 - Ra	Unventilated Air G	ap resistance R _a in m ²⁰ C	/ W
Air Space Thickness	Surface Emissivity	Thermal resistance (m ²⁰	C / W)
		Heat flow Horizontal	Heat flow
		or Upwards	Downwards
5 mm	High	0.11	0.11
	Low	0.18	0.18
20 mm	High	0.18	0.21
	Low	0.35	1.06

(b) Fig 2.2 shows the plan of an office on the second floor of a four storey building. The other floors have the same construction and heating design conditions.

From the data given and using convection heating, calculate the total rate of heat loss for this office. [12 marks]

Q3 (a) A two pipe LPHW central heating system is shown in Fig 3.1. The pipe work is medium grade steel. The heat output from each radiator does not allow for a fixed percentage heat loss from the insulated pipe work supplying those radiators.

Under the design conditions shown, find the following for pipe sections 1, 2 and 3.

(i) Pipe diameter, (ii) Pressure drop per meter - dP_1 , (iii) Length equivalent factor - l_e . NB: it is not necessary to compare the actual heat loss from the insulated pipe work with

the theoretical value estimated.

Table C4.12, Page C4-15, "Medium Grade Steel Water at 75°C attached for reference.Table C3.14 – heat emission from horizontal steel pipe – Not required.[10 marks]

(b) For the same LPHW circuit find the effective pipe length of the straight pipe plus fittings for all sections. From this find the total pressure drop on the index run. Use this to derive a pump duty for the circulation pump in this circuit. Bends are welded mild steel elbows and isolation valves are gate valves. Table C4.36 – "Velocity Pressure Loss factors" attached for reference. [10 marks]

Q4 (a) The production area and associated rooms shown in Fig 4.1 below are to be supplied with air conditioned air through the supply air duct shown. The air is supplied from point A to supply air grilles at B, C, D and E. There are no change in levels between A and E. Using the design criteria provided on the sketch and the ductwork design sheet attached, establish the most economical circular duct size for the layout shown in Fig 4.1. Include all relevant information on the ductwork design sheet. Ensure you put your name on the sheet and attach the sheet to your answer book. Fig C4.2, Table C4.33 and Table C4.35 Page 1&2 attached as ref. [15 marks]

FIG 4.1 - DUCTWORK DESIGN

(b) Fig 4.1 shows fire dampers on each of the dividing walls between the rooms. With the aid of a neat sketch show the details of two different types of fire dampers commonly used in air conditioning ducting. [5 marks]

- Q5 (a) Air conditioning is used to control the temperature, humidity, cleanliness and distribution of air within the air conditioned space. Filters are used in controlling the cleanliness of the air. Briefly describe three types of air filters that may be found in air conditioning systems indicating how each works. [6 marks]
 - (b) Draw a schematic of a "split system" packaged air conditioning unit in room cooling mode, complete with compressor, heating and cooling coils, reversing valve, expansion device, fans and direction of flow of the refrigerant.
 Indicate on the schematic the state of the refrigerant immediately after the expansion

Indicate on the schematic the state of the refrigerant immediately after the expansion device, i.e, High Pressure or Low Pressure, Liquid or gas. [8 marks]

Use the Psychrometric Chart attached to plot and determine the following conditions. NB: It is not necessary to attach the chart to your answer book.

- (c) In winter, cold air at a dry bulb of 5 Deg C and 60 % relative humidity enters a building through a heater battery and is heated to a dry bulb temperature of 20 Deg C, without adding moisture. From the Psychrometric chart find, [2 marks]
 - (c) i. The Wet Bulb temperature of the incoming air.
 - (c) ii The Relative Humidity of the heated air.
- (d) The air in a room has a dry bulb temperature of 22 Deg C and a wet bulb temperature of 16 Deg C. From the Psychrometric chart find, [2 marks]
 - (d) i The Relative Humidity of the air.
 - (d) ii The temperature of the walls when condensation will occur.
- (e) Air enters an Air Handling unit at a dry bulb temperature of 25 Deg C and 70 % relative humidity. The final condition required is a dry bulb temperature of 20 Deg C and 50 % relative humidity. From the Psychrometric chart find, [2 marks]
 - (e) i The reduction in moisture content of the air.
 - (e) ii The lowest temperature the air must be cooled to in order to achieve the reduced moisture content.

- Q6. (a) With the aid of a neat sketch show all the equipment associated with a typical "wet" sprinkler system for a two storey building. [6 marks]
 - (b) Using a neat sketch show the general arrangement of an on site automatic sprinkler pump system including the water storage and water supply. [6 marks]
 - (c) Outline the type of portable fire extinguishers you would recommend for use on fires involving four of the following materials :- [4 marks]

No.	(i)	(ii)	(iii)	(iv)	(v)
Class	А	В	С	D	Е
Fire Type	Wood &	Petroleum	Gases	Inflammable	Electrical
	textiles			metals	

- (d) Briefly explain how each type of extinguisher described above is effective in fighting the relevant fire. [4 marks]
- Q7 (a) Global warming is a phenomenon attributed to increased industrialisation of our planet. With the aid of a neat sketch describe how global warming has come about. [10 marks]
 - (b) Air pollution is a major contributor to global warming. Describe three types of air pollution, their sources, effects on humans and vegetation, and possible control measures to help reduce their level.
 [10 marks]

Loading Units for various types of Sanitary Applications.

Table 1

Location / Appliance	Loading Units
Dwellings and Flats	
W.C flushing cistern	61
Wash basin	1.5
Bath	10
Sink	3 - 5
Offices	
VV.C flushing cistern	2
Wash basin (distributed use)	1.5
Wash basin (concentrated use)	ю
Schools and Industrial Buildings	
W.C flushing cistern	2
Wash basin	ы
Showers (with spray rose)	ი
Public bath	22
It should be noted that certain sanitary appliances such	as those fitted
with sorav tans, umbrella taps, shower nozzles or simi	ar fittinos require

are sproy upor, unaverse upor, enverse incastos or annuar mungoro. a continuous flow of water as long as such appliances are in use.

Table 2 Recommended minimum flow rates for

Sanitary Appliances.	
Type of appliance	Rate of Flow (I/s)
W.C flushing cistern	0.12
Wash basin	0.15
Wash basin with spray taps	0.04
Bath (private)	0:30
Bath (public)	0.60
Shower 9 with nozzle)	0.12
Sink with 13mm taps	0.20
Sink with 19mm taps	0.30
Sink with 25mm taps	0.60

Tables 1, 2, 3 and 4 - Hot and Cold Water Pipework Design. Table 3 es of Sanitary Applications.

Copper			Galvanised	Steel		
Nominal			Nominal			
outside	Equivalet	nt length	outside	Equivale	nt length	
diameter	Meter rui	n of pipe	diameter	Meter rur	n of pipe	
(mm)	Elbow	Tee	(um)	Elbow	Bend	Tee
15	0.5	0.6	15	0.5	0.4	12
22	0.8	1.0	20	0.6	0.5	1.4
28	1.0	1.5	25	0.7	0.6	1 .8
35	4.1	2.0	32	1.0	0.7	2.3
42	1.7	2.5	40	1,2	1.0	2.7
54	2.3	3.5	50	1.4	1.2	3.4
62	3.0	4.5	65	1.7	1.3	4.2
76	3.4	5.8	80	2.0	1.6	5.3
108	4.5	8.0	100	2.7	2.0	6.8

Table 4

Frictional resistance of draw off taps and globe type isolation valves expressed as equivalent pipe lengths

					And the second sec	
	Equivalent	lengths in	meters for r	nominal dia	meter fittin	ső
	13/15mm	19/22mm	25/28mm	35mm	42mm	54mm
Bib Tap, Pillar Tap, Globe type Isol v/v	Sm	ôm	щs	11m	14m	18m
3all Float Valves HP	75m	40m	40m	35m	21m	20m
Ball Float Valves LP	8					

4-40

;

Reference data

Table 4.18 Flow of water at 10°C in copper	r pipes	
$q_m = \text{mass flow rate}$	kg.s ⁻¹	COPPER, TABLE X
 c = velocity Δρl! = pressure drop per unit length 	m.s ⁻¹ Pa.m ⁻¹	WATER AT 10°C
$l_a = \text{equivalent length of a component}$ for $\zeta = 1$	m	

(Re) = 2000(Re) = 3000

$\Delta p/l$	e	12 mm		15 mm		22 mm		28 mm		35 mm		42 mm		e	$\Delta p/l$
		q _m	1.	20	1.	q_{α}	1.	q_{α}	l_{e}	q_{α}	1,	2,0	1.		
50		0.013	0.2	0.026	0.3	0.070	0.5	0.144	0.7	0.263	1.0	0.447	1.3		50
55		0.014	0.2	0.027	0.3	0.074	0.5	0.152	0.7	0.278	1.0	0.472	1.3		55
60		0.015	0.2	0.028	0.3	0.078	0.5	0.160	0.7	0.292	1.0	0.496	1.3		60
65		0.017	0.3	0.029	0.3	0.082	0.5	0.168	0.7	0.306	1.0	0.520	1.4		65
70	0.2	0.018	0.3	0.030	0.3	0.086	0.5	0.175	0.8	0.319	1.0	0.542	1.4		70
75		0.019	0.3	0.031	0.3	0.089	0.5	0.182	0.8	0.332	1.1	0.564	1.4		75
80		0.020	0.3	0.032	0.3	0.093	0.5	0.189	0.8	0.345	1.1	0.585	1.4		80
85		0.022*	0.3	0.033	0.3	0.096	0.5	J 0.195	0.8	0.357	1.1	0.605	1.4	0.5	85
90		0.019	0.2	0.034	0.5	0.099	0.5	0.205	0.8	0.309	1.1	0.620	1.4		90
100		0.020	0.2	0.000	0.5	0.100	0.5	0.207	0.0	0.303		0.040	1.7		100
110		0.020	0.2	0.030	0.3	0.100	0.5	0.210	0.8	0.392	1.1	0.005	1.5		110
120		0.022	0.2	0.040	0.3	0.117	0.6	0.239	0.8	0.435	1.1	0.738	1.5		120
130		0.023	0.2	0.041+	0.3	0.123	0.6	0.251	0.8	0.456	1.1	0.772	1.5		130
140		0.024	0.Z	0.043	0.3	0.128	0.6	0.262	0.8	0.475	1.2	0.805	1.5		140
150		0.025	0.2	0.045	0.3	0.134	0.6	0.272	0.8	0.494	1.2	0.838	1.5		150
160		0.026	0.2	0.047	0.3	0.139	0.6	0.283	0.9	0.513	1.2	0.869	1.6		160
170		0.027	0.2	0.048	0.3	0.144	0.6	0.293	0.9	0.531	1.2	0.899	1.6		170
180	0.3	0.027	0.2	0.050	0.3	0.149	0.6	0.302	0.9	0.549	1.2	0.929	1.6		180
190		0.028	0.2	0.052	0.3	0.153	0.6	0.31Z	0.9	0.566	1.2	0.958	1.6		190
200		0.029	0.2	0.053	0.3	0.158	0.6	0.321	0.9	0.583	1.2	0.986	1.6		200
225		0.031	0.2	0.057	0.3	0.169	0.6	0.344	0.9	0.623	1.2	1.05	1.6		225
250		0.032	0.Z	0.061	0.3	0.180	0.6	0.365	0.9	0.662	1.3	1.12	1.6		250
275		0.034	0.2	0.064	0.4	0.190	0.0	0.385	0.9	0.698	1.3	1.18	1.7	1.0	275
500		0.056	0.3	0.007	0.4	0.200	0.0	0.405	0.9	0.754	1.5	1.24	1.7		500
325		0.037	0.3	0.071	0.4	0.209	0.7	0.424	1.0	0.768	1.3	1.30	1.7		325
275		0.039	0.3	0.074	0.4	0.218	0.7	0.442	1.0	0.801	1.2	1.55	1.7		375
400		0.042	0.3	0.080	0.4	0.236	0.7	0.477	1.0	0.864	1.3	1.46	1.8		400
425		0.044	0.3	0.083	0.4	0.244	0.7	0.494	1.0	0.894	1.3	1.51	1.8		425
450	0.5	0.045	03	0.085	0.4	0.252	0.7	0.513	1.0	0.924	1.4	1.56	1.8		450
475		0.047	0.3	0.088	0.4	0.260	0.7	0.527	1.0	0.952	1.4	1.61	1.8		475
500		0.048	0.3	0.091	0.4	0.268	0.7	0.542	1.0	0.980	1.4	1.66	1.8		500
550		0.051	0.3	0.096	0.4	0.283	<i>0.</i> 7	0.572	1.0	1.04	1.4	1.75	1.8		550
600		0.054	0.3	0.101	0.4	0.297	0.7	0.601	1.0	1.09	1.4	1.83	1.8	1.5	600
650		0.056	0.3	0.106	0.4	0.311	0.7	0.629	1.0	1.14	1.4	1.92	1.9		650
700		0.059	0.3	0.110	0.4	0.324	0.7	0.656	1.1	1.19	1.4	2.00	1.9		700
750		0.061	0.3	0.115	0.4	0.337	0.7	0.682	1.1	1.23	1.4	2.08	1.9		750
800		0.063	0.3	0.119	0.4	0.350	0.7	0.708	1.1	1.28	1.5	Z.16	1.9		800
850		0,066	0.3	0.125	0.4	0.362	0.8	0.732	1.1	1.52	1.5	6.63	1.9		850
900		0.068	0.3	0.127	0.4	0.374	0.8	0.757	1.1	1.37	1.5	2.30	1.9		900
950	1	0.070	0.3	0.131	0.4	0.360	0.8	0.780	1.1	1.41	1.5	2.57	2.9	2.0	1000
1100		0.072	0.3	0.133	0.4	0.420	0.8	0.805	1.1	1.53	1.5	2.58	2.0	6.0	1100
1200		0.080	0.3	0.150	0.4	0.441	0.8	0.890	1.1	1.61	1.5	2.71	2.0		1200
1300		0.084	03	0.157	05	0.461	0.8	0.931	11	1.68	1.6	2.83	2.0		1300
1400		0.088	0.3	0.164	0.5	0.481	0.8	0.971	1.2	1.75	1.6	2.95	2.0		1400
1500	1.0	0.091	0.3	0.171	0.5	0.500	0.8	1.00	1.2	1.82	1.6	3.06	2.1		1500
1600		0.095	0.3	0.177	0.5	0.519	0.8	, 1.05	1.2	1.89	1.6	3.18	2.1		1600
1700		0.098	0.3	0.184	0.5	0.537	0.8	1.08	1.2	1.95	1.6	3.29	2.1		1700
1800		0.101	0.3	0.190	0.5	0.555	0.8	1.12	1.2	2.02	1.6	3.39	2.1		1800
1900		0.104	0.3	0.196	0.5	0.572	0.8	1.15	1.2	2.08	1.6	3.50	2.1		1900
2000		0.108	0.3	0.201	0.5	0.589	0.8	1.19	1.2	2.14	1.6	3.60	2.1	3.0	2000
2250		0.115	0.4	0.215	0.5	0.629	0.9	1.27	1.2	2.28	1.7	3.84	2.2		2250
2500		0.122	0.4	0.229	0.5	0.668	0.9	1.35	1.2	Z.42	1.7	4.07	2.2		2500
2750		0.129	0.4	0.242	0.5	0.705	0.9	1.42	1.3	2.55	1.7	4.29	2.2		2750
3000	1.5	0.136	0.4	0.254	0.5	0.740	0.9	1.49	1.3	2.68	1.7	4.51	Z.Z		3000
3250		0.142	0.4	0.200	0.5	0.774	0.9	1.50	1.5	2.80	17	4.71	2.2	4.0	3500
3750	1	0.146	0.4	0.288	0.5	0.839	0.9	1.69	1.3	3.03	1.8	5.10	2.3	4.0	3750

Hot and Cold Water Pipework Design Spreadsheet

Pipework Description.

Student / P	roject name.							
Effective F	Pipe lengths	;						
Pipe	Design	Est Pipe	Measured	No. of T's	No. elbow	No.Valve	No.Taps	Effective
Section	Flow I/s	diam 1m/s	length (m)	x Equiv L	x Equiv L	x Equiv L	x Equiv L	Length
						2 2 2 2 2 2		
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

r 18 mil 17 mil 18 mil 18 die des Instandie die Terre des	****							
						1		

Pipe	Effective	He	ead Availab	le	Less residual	Total dP (Pa)	Max dP / m	Critical
Section	Length (m)	Meters	kPa	Pa	Head req'd	Allowable	allowable	Run (min
					·····			

			·····					

Pipe sectio	n sizing							
Pipe	Effective	Design	Chosen	Relevant	dP for this	Cumulative	Avaliable	Confirm
Section	Length (m)	Flow I/s	Pipe diam	dP _L (Pa/m)	section	dP this run	Head (Pa)	diam

						1747-1447-1446-1447-1447-1447-1447-1447-		
								<i>b</i>
			*******	******				
		************		*****				

Flow of fluids in pipes and ducts

Table 4.11 Flow of water at 75°C in medium	MEDIUM GRADE STEEL	
$q_m = \text{mass flow rate}$ c = velocity $c_m = \text{pressure drop per unit length}$	kg.s** ni.s** Pa.m**	WATER AT 75°C
l_e = equivalent length of a component for $\zeta = 1$	m	

Apil	c	10 mm		15 mm		20 mm		25 mm		32 mm		40 mm		50 mm		с	∆øil
24.00	-	a	1	0	1.	9.	11	9	1	9	1.	9	l.	€n.	l _e		
025		0.029	0.3	0.060	0.5	0.132	0.7	0.247	1.0	0.518	1.5	0.778	1.8	1.45	2.4		92.5
95.0		0.030	0.3	0.061	0.5	0.134	0.7	0.251	1.0	0.526	1.5	0.789	1.8	1.48	2.4		95.0
97.5		0.030	0.3	0.062	0.5	0.136	0.7	0.254	1.0	0.533	1.5	0.800	1.8	1.50	Z.4		97.5
100.0		0.031	0.3	0.062	0.5	0.138	0.7	0.258	1.0	0.540	1.5	0.810	1.8	1.52	24		120.0
120.0	0.30	0.034	0.3	0.069	0.5	0.152	0.7	0.284	1.0	0.595	1.5	0.895	1.0	1.67	2.4		120.0
140.0		0.037	0.3	0.075	0.5	0.165	0.8	0.308	1.0	0.646	1.5	0.968	1.8	1.81	2.5		140.0
160.0		0.040	0.4	0.081	0.5	0.178	0.8	0.331	1.0	0.693	1.5	1.04	1.8	2.06	2.3	10	180.0
180.0		0.042	0.4	0.086	0.5	0.189	0.8	0.353	1.0	0.738	1.5	1.11	1.0	2.00	2.5	1.0	200.0
200.0		0.045	0.4	0.091	0.5	0.200	0.8	0.373	1.1	0.780	1.5	1.17	1.7	2.29	2.5		220.0
220.0		0.047	0.4	0.096	0.5	0.211	0.8	0.392		0.020	1.5	1.20	10	2.40	25		240.0
240.0		0.050	0.4	0.100	0.5	0.221	0.8	0.411	1.1	0.805	1.5	1.67	1.9	2.50	2.5		260.0
260.0		0.052	0.4	0.105	0.5	0.230	0.8	0.445	11	0.875	1.5	1.39	1.9	2.60	2.6		280.0
280.0	1	0.054	0.9	0.109	0.5	0.259	0.8	0.462	11	0.965	1.5	1.44	1.9	2.69	2.6		300.0
300.0	0.50	0.050	0.4	0.117	0.5	0.257	0.8	0.478	1.1	0.998	1.6	1.49	1.9	2.78	2.6		320.0
520.0	0.30	0.000	0.4	0.172	0.5	0.265	0.8	0.493	11	1.03	1.6	1.54	1.9	2.87	2.6		340.0
340.0		0.060	0.4	0.121	0.5	0.203	0.8	0.508	11	1.05	1.6	1.59	1.9	2.96	2.6	1	360.0
300.0		0.062	0.4	0.125	0.5	0.281	0.8	0.523	1.1	1.09	1.6	1.63	1.9	3.04	2.6		380.0
400.0		0.065	0.4	0.132	0.5	0.289	0.8	0.537	1.1	1.12	1.6	1.68	1.9	3.12	2.6		400.0
420.0		0.067	0.4	0.135	0.5	0.297	0.8	0.551	1.1	1.15	1.6	1.72	1.9	3.20	2.6	1.5	420.0
440.0		0.059	04	0.139	0.5	0.304	0.8	0.564	1.1	1.18	1.6	1.76	1.9	3.28	2.6		440.0
460.0		0.076	0.4	0.142	0.5	0.311	0.8	0.578	1.1	1.21	-1.6	1.80	1.9	3.36	2.6	1	460.0
480.0		0.072	0.4	0.145	0.5	0.318	0.8	0.591	1.1	1.23	1.6	1.84	1.9	3.43	2.6		480.0
500.0		0.074	0.4	0.148	0.5	0.325	0.8	0.603	1.1	1.25	1.6	1.88	1.9	3.51	2.6		500.0
520.0	1	0.075	0.4	0.151	0.5	0.332	0.8	0.616	1.1	1.29	1.6	1.92	1.9	3.58	2.6		520.0
540.0	1	0.077	0.4	0.154	0.6	0.338	0.8	0.628	1.1	1.31	1.6	1.96	1.9	3.65	2.6		540.0
560.0		0.078	0.4	0.157	0.6	0.345	0.8	0.640	1.1	1.34	1.6	2.00	1.9	3.72	2.6		500.0
580.0		0.080	0.4	0.160	0.6	0.351	0.8	0.652	1.1	1.36	1.6	2.03	1.9	3.78	2.0		500.0
600.0		0.081	0.4	0.163	0.6	0.355	0.8	0.664	1.1	1.38	1.0	2.07	1.9	2.02	2.0		620.0
620.0		0.082	0.4	0.165	0.6	0.364	0.8	0.675	1.1	1.41	1.0	2.10	1.7	3.76	3.6		640.0
640.0		0.084	0.4	0.169	0.6	0.370	0.8	0.686	1.1	1.43	1.6	2.14	1.9	3.98	2.0		660.0
660.0		0.085	0.4	0.172	0.6	0.376	0.8	0.697	1.1	1.49	1.0	2.17	1.9	4 11	2.6		680.0
680.0		0.087	0.4	0.174	0.0	0.582	0.8	0.708	- 11	1.40	1.6	2.24	1.9	4.17	2.6		700.0
700.0		0.088	0.4	0.177	0.6	0.500	0.8	0.730	1.1	1.52	1.6	2.27	1.9	4.23	2.6		720.0
720.0		0.089	0.4	0.100	0.0	0.000	0.0	0.740		1.54	16	2.31	2.0	4.29	2.6	2.0	740.0
740.0		0.091	0.4	0.182	0.0	0.599	0.0	0.750	1.1	1.56	1.6	2.34	2.0	4.35	2.6		760.0
760.0		0.092	0.4	0.187	0.6	0.410	0.8	0.761	1.1	1.59	1.6	2.37	2.0	4.41	2.6		780.0
200.0		0.095	0.4	0.190	0.6	0.416	0.8	0.771	1.1	1.61	1.6	2.40	2.0	4.46	2.6		800.0
820.0		0.096	0.4	0.192	0.6	0.421	0.8	0.780	1.1	1.63	1.6	2.43	2.0	4.52	2.6		820.0
840.0		0.097	04	0.195	0.6	0,426	0.8	0.790	1.1	1.65	1.6	2.46	2.0	4.58	2.6		840.0
860.0	1	0.098	0.4	0.197	0.6	0.431	0.8	0.800	1.1	1.67	1.6	2.49	2.0	4.63	2.6		\$60.0
880.0		0.099	0.4	0.200	0.6	0.437	$\theta.8$	0.810	I.!	1.69	1.6	2.52	2.0	4.69	2.6		880.0
900.0		0.100	0.4	0.202	0.6	0.442	0.8	0.819	I.1	1.71	1.6	2.55	2.0	4.74	2.0	2	900.0
920.0		0.102	0.4	0.204	0.6	0.447	0.8	0.828	1.1	1.73	1.6	2.58	2.0	4.80	2.0	2	20.0
940.0		0.103	0.4	0.207	0.6	0.452	0.8	0.838	1.1	1.75	1.6	2.61	2.0	4.85	2.0	5	940.0
960.0		0.104	0.4	0.209	0.6	0.457	0.8	0.847	1.1	1.76	1.6	2.64	2.0	4.90	2.0		900.0
980.0		0.105	0.4	0.211	0.6	0.462	0.8	0.856	1.1	1.78	1.6	2.66	2.0	1 4.95	2.0		1000.0
1000.0		0.106	0.4	0.213	0.6	0.467	0.8	0.865	1.1	. 1.80	1.0	2.09	2.0	5.00	2	7	1100.0
1100.0		0.112	0.4	0.224	0.6	0.490	0.8	0.909	1.1	1.89	1.0	2.05	2.5	5.20		-	1200.0
1200.0	1.0	0.117	0.4	0.235	0.6	0.513	0.8	0.950	1.1	1.98	1.6	2.96	2.0	5.49	2.	7	1300.0
1300.0		0.122	0.4	0.245	0.6	0.535	0.8	0.990	1.1	2.06	1.0	3.08	2.0	504	2	7	1400.0
1400.0		0.127	0.4	0.254	0.6	0.555	0.8	1.03	1.1	2.14	1.0	5.20	21	7 6.16	2	7	1500.0
1500.0		0.131	0.4	0.263	0.6	0.576	0.8	110	1.1	2 70	1.0	3.42	2.0	6.36	2	7 3.0	1600.0
1600.0		0.136	0.4	0.272	0.6	0.595	, 0.9			12.27		2 2 5 2	24	6.56	2	7	1700.0
1700.0		0.140	0.4	0.281	0.6	0.614	+ 0.9	1.14	1.1	2.5/	× 1/	5 3.64	2	6.76	2	7	1800.0
1800.0		0.144	0.4	0.290	0.6	0.63	ε 0.5 δ Δ.6	1.1/	1.4	2.50	1.0	5 3.74	2.0	6.94	2.	7	1900.0
1900.0)	0.148	0.4	0.298	0.6	0.03	· 0.5	1.20	1.4		4.15		24				

4-15

Notes to Table C4.36.

Convergent flow at junctions Where the velocity of flow in one branch of a tee, at a converging junction, is high relative to the velocity in the other, the pressure loss factor for the latter may be negative due to the injection effect.

Topers Where the included angle is 10° or less, take a factor of 0.2 for an enlargement and ignore for a contraction.

Individual designs may show wide variations over the values tabulated. Valves

Radiators The resistance to flow through a cast iron column radiator with Scolumns may be approximated by: $p = 5720 M^2 S^{0.25}$

Specialist equipment Manufacturers' data should be consulted in these cases.

and the second se	100 million (100 million)				-	and the second se	A		_	_								
		≻	əziS	Γ		1							1					
		×	λbe		1	-	1		T				1					
	OSS	З	Total Loss		1	-	1		-									
	ERL	>	Face Velocity m/s		+			-	-									
	FFUS	5	Neck Velocity m/s	-	1	-		-	-		$\left \right $							
	E / DI		Height from ceiling	-	\vdash	\vdash			-									
	RILL		word		-	-		-	-	-								
8	ß		.9b nu xəbri		-	-		-										
			1 L X (mor) 5		-			-		-								
NON		⊢	Total Fittings Loss (Pa) ≕7 (761a) x Pv										Work					
058		s	Velocity press Pv (Pa) C4.33										onah	D				
NOR		æ	Total Zeta factor (all fittings)	-						-		+	" ~					
C.J.		σ	Sub-Total for others															
9		۵.	Zeta factor Other fittings															
		0	No. Other Fittings															
		z	Sub-Total for Transitions										1					
		×	Zeta factor Transitions															
	C4.35)	┛	anoitianan .oN															
	SS (¥	Sub-Total for bends										ketch					
	10 LO	-	Zeta factor bends etc										Ĩ	,				
	ALL I	-	No. Bends, Branches, Tees									-	١r	Π		Π		1
	5											1	11			TYPE	SSS	
	S (04	Ŧ	Total Duct Loss Pa										1	dBa		DUCT	OT L	
	LOS	U	miles each shueseng													Ħ	l ss	1
AGV.	DUCT	ш	Straight Length m											LIMIT		INSUI	LA LO	
NOLO													DAT	VOISE		DUCT	SEGS	Ι.
TEG	a	ш	Rectangular mm										SIGN	Π	-		SS	1
10 J	lg C4	۵	velocity m/s										Ш	B RES		IR VO	GS LG	
nm	ÐN	υ	Duct Diameter m										1	SIZINC		TOT A	FITTIN	
XINS Stilles	SIZI	m	s∖£m wol∃ hiA										1			Ť		1
CORI Proje	DUC	A	Duct Reference											СT СТ		ΥPE	LOSS	
				-	2	ŝ	4	ъ	ø	~	8	00	11	lä		L.	15	1

FLOW OF FLUIDS

C4-59

ľ

Velocity (m/s)	0-0	0-1	0.2	0-3	0-4	0-5	0-6	0-7	0-8	÷ 0-9
0 1 2 3 4 5	0-00 0-60 2-40 5-40 9-60 15-00	0.01 0.73 2.65 5.77 10.09 15.61	0-02 0-86 2-90 6-14 10-58 16-22	0.05 1.01 3.17 6.53 11.09 16.85	0-10 1-18 3-46 6-94 11-62 17-50	0.15 1.35 3.75 7.35 12.15 18.15	0-22 1-54 4-06 7-78 12-70 18-82	1.73 4.37 8.21 13.25 19.49	0-38 1-94 4-70 8-66 13-82 20-18	0-49 2-17 5-05 9-13 14-41 20-89
6	21.60	22-33	23·06	23-81	24.58	25·35	26-14	26-93	27:74	28-57
7	29.40	30-25	31·10	31-97	32.86	33·75	34-66	35-57	36:50	37-45
8	38.40	39-37	40·34	41-33	42.34	43·35	44-38	45-41	46:46	47-53
9	48.60	49-69	50·78	51-89	53.02	54·15	55-30	56-45	57:62	58-81
10	60.00	61:21	62·42	63-65	64.90	66·15	67-42	68-69	69:98	71-29
11	72-60	73-93	75-26	76-61	77-98	79·35	80-74	82-13	83-54	84-97
12	86-40	87-85	89-30	90-77	92-26	93·75	95-26	96-77	98-30	99-85
13	101-40	102-97	104-54	105-13	107-74	109·35	110-98	112-61	114-26	115-93
14	117-60	119-29	120-98	122-69	124-42	126·15	127-90	129-65	131-42	133-21
15	135-00	136-81	138-62	140-45	142-30	144·15	146-02	147-89	149-78	151-69
16	153-60	155-53	157-46	159-41	161-38	163-35	165-34	167-33	169-34	171-37
17	173-40	175-45	177-50	179-57	181-66	183-75	185-86	187-97	109-10	192-25
18	194-40	196-57	198-74	200-93	203-14	205-35	207-58	209-81	212-06	214-33
19	216-60	218-89	221-18	223-49	225-82	228-15	230-50	232-85	235-22	237-61
20	240-00	242-41	244-82	247-25	249-70	252-15	254-62	257-09	259-58	262-09
21	264-60	267·13	269-66	272-21	274-78	277-35	279-94	282-53	285-14	287-77
22	290-40	293·05	295-70	298-37	301-06	303-75	306-46	309-17	311-90	413-65
23	317-40	320·17	322-94	325-73	328-54	331-35	334-18	337-01	339-86	342-73
24	345-60	348·49	351-38	354-29	357-22	360-15	363-10	366-05	369-02	372-01
25	375-00	378·01	381-02	384-05	387-10	390-15	393-22	396-29	399-38	402-49
26	405-60	408-73	411-86	415-01	418-18	421-35	424-54	427-73	430-94	434-17
27	437-40	440-65	443-90	447-17	450-46	453-75	457-06	460-37	463-70	467-05
28	470-40	473-77	477-14	480-53	- 483-94	487-35	490-78	494-21	497-66	501-13
29	504-60	508-09	511-58	515-09	518-62	522-15	525-70	529-25	532-82	536-41
30	540-00	543-61	547-22	550-85	554-50	558-15	561-82	565-49	569-18	572-89
31	576-60	580-33	584-06	587-81	591-58	595-35	599•14	602-93	606-74	610-57
32	614-40	618-25	622-10	625-97	629-86	633-75	637·66	641-57	645-50	649-45
33	653-40	657-37	661-34	665-33	669-34	673-35	677·38	681-41	685-46	689-53
34	693-60	697-69	701-78	705-89	710-02	714-15	718·30	722-45	726-62	730-81
35	735-00	739-21	743-42	747-65	751-90	756-15	760·42	764-69	768-98	773-29
36	777-60	781-93	786-26	790-61	794-98	799-35	803-74	808-13	812-54	816-97
37	821-40	825-85	830-30	834-77	839-26	843-75	848-26	852-77	857-30	861-85
38	866-40	870-97	875-54	880-13	884-74	889-35	893-98	898-61	903-26	907-93
39	912-60	917-29	921-98	926-69	931-42	936-15	940-90	945-65	950-42	955-21
40	960-00	964-81	969-62	974-45	979-30	984-15	989-02	993-89	998-78	1003-69
		1								Startin Starting

•

TABLE C4.35.Velocity pressure loss factors for duct fittings - continued

Notes to Table C4.35,

Bend angles Where bends turn through angles of less than 90° , the pressure loss factor may be presumed to vary in the proportion $\theta/90$ unless stated otherwise. Changes of shape (transitions) For tapered changes of shape where $\theta < 60^{\circ}$ and $\Lambda_{\tau} \simeq \Lambda_{\gamma}$, the

Splitters

Splitters Where straight ducts have splitters, the straight duct friction loss through each component part should be considered. Approaches The values for the pressure loss factors quoted here assume that the approaching velocity profile is regular. Any eccentricity or distortion may increase or decrease the loss. Diameters Diameters

For rectangular ducts, the hydraulic mean diameter as given by

