An Analysis into Wind Induced Loading Effects on a Ship-to-Shore (STS) Crane and Investigation into Design Optimisation

Brian Hand
Bachelor of Engineering
First Class Honours

Final Year Capstone Project

in conjunction with

LIEBHERR
Over ninety percent of world cargo is transported by sea. Ship-to-Shore (STS) cranes account for 300 million containers annually. Ports are expected to double/triple output by 2020, further driving a global trend towards larger STS cranes. Conservative wind-loading standards lead to high mass crane structures, tie-down and quay foundation issues. STS crane configuration and dynamic/unpredictable nature of wind flow poses major challenges to divergence from the standards-based approach. Extensive modelling and wind tunnel testing of airflow around critical sections, undertaken by the author, indicates an optimal analysis method. A novel prototype crane tie-down system is developed/tested. Significant material/operation/quay-infrastructure/energy-usage improvements are predicted.

“Give me a place to stand and, with a lever long enough, I will move the whole world”

(Archimedes)
Abstract

The maritime shipping industry dominates the transport of world cargo. Ship-to-Shore (STS) cranes play a crucial function in the provision of this safe and reliable means of transporting goods. The increasing transport demands of the maritime industry has dictated that STS container cranes are significantly increasing in size. The environmental and coastal locations of these cranes invariably leads to exposure to damaging meteorological effects of storms and other adverse weather phenomena.

Currently traditional and highly conservative standards are utilised to quantify wind loading on these structures. The traditional standards based design approach leads to high mass crane structures and creates foundation problems in many harbour and quay structures - a problem exacerbated by the increasing trend towards larger STS cranes. The complex physical geometry of modern STS cranes combined with the dynamic and unpredictable nature of wind flow poses a major challenge to the designer / analyst wishing to diverge from the standards based approach. This analysis and validation challenge is undertaken by the author as a final year capstone project following work placement with Liebherr of Killarney, Co. Kerry, Ireland.

Extensive computational fluid dynamics (CFD) models are created and analyses conducted by the author to examine the airflow around critical modelled sections of a Liebherr STS crane. Physical scale model generation and wind tunnel testing is undertaken by the author to validate the determined CFD results. The CFD approach is indicated as an optimal analysis method - allowing the designer to accurately determine locations and magnitudes of high pressure and make informed design decisions based on these results. Significant operational and efficiency gains have been determined and are presented.

Design optimisation is conducted by the author on the crane tie-down system – this system significantly influenced by author CFD determined critical wind loading. A systematic design and prototype production approach is adopted to create and optimise a functional and dynamic design.
Table of Contents

Synopsis .. 1
Abstract ... II

1.0 Nomenclature .. 1

2.0 Introduction ... 2

3.0 Literature Research ... 3

3.1 Containerisation-The Concept .. 3
3.2 The Container Crane .. 4
 3.2.1 Introduction ... 4
 3.2.2 Brief History ... 4
3.3 Challenges .. 5
 3.3.1 Productivity ... 5
 3.3.2 Quay Infrastructure .. 5
 3.3.3 Wind-Induced Failure of Crane Components .. 6
 3.3.4 Emerging Technology ... 8

4.0 Computational Fluid Dynamics Application ... 8

4.1 Computational Approach ... 9
4.2 Computational Mesh Quality/Accuracy ... 10
4.3 Applicable CFD Model Algorithm ... 12
4.5 Numerical Results ... 14

5.0 Wind Tunnel Testing .. 15

5.1 Overview ... 15
5.2 Scale Model Similitude Theory .. 16
 5.2.1 Scaling Laws ... 16
 5.2.2 Model Test Conditions .. 16
5.3 Physical Model .. 17
 5.3.1 Scaling Conditions ... 17
 5.3.2 Finite Element Analysis .. 18
5.4 Wind Tunnel Test ... 19

6.0 Design Optimisation .. 25

6.1 Overview ... 25
6.2 Systematic Design ... 26
 6.2.1 Design Iterations .. 26
 6.2.2 Functional Analysis .. 29
6.3 Finite Element Analysis (FEA) .. 30
 6.3.1 Torsional Loading Analysis ... 31
 6.3.2 Direct Tensile Loading Analysis ... 32
 6.3.2 FEA Results ... 33
6.4 Photoelasticity Analysis .. 34
 6.4.1 Outline .. 34
 6.4.2 Testing .. 36
6.5 Prototype Development .. 37
 6.5.1 Manufacture/Instrumentation ... 37
 6.5.2 Prototype Testing .. 38
7.0 Financial/Commercial Benefits ... 39
Conclusion ... 43
References ... 45
Bibliography ... 47

Appendix A – Project Feedback from Liebherr
Appendix B – Extended CFD Analysis Versions
Appendix C – Extended Wind Tunnel Testing Versions
Appendix D – Design Optimisation Extended Versions
1 Nomenclature

Note - All units are presented in the following format unless otherwise stated:

1.1 Roman Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>SI Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Young's Modulus</td>
<td>GPa</td>
</tr>
<tr>
<td>F</td>
<td>Force</td>
<td>N</td>
</tr>
<tr>
<td>(F_D)</td>
<td>Drag force</td>
<td>N</td>
</tr>
<tr>
<td>(F_L)</td>
<td>Lift force</td>
<td>N</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration due to gravity</td>
<td>m/s²</td>
</tr>
<tr>
<td>G</td>
<td>Shear Modulus</td>
<td>GPa</td>
</tr>
<tr>
<td>I</td>
<td>Turbulence intensity</td>
<td>%</td>
</tr>
<tr>
<td>k</td>
<td>Specific turbulent kinetic energy</td>
<td>m²/s²</td>
</tr>
<tr>
<td>L</td>
<td>Characteristic length</td>
<td>m</td>
</tr>
<tr>
<td>M</td>
<td>Mass</td>
<td>Kg</td>
</tr>
<tr>
<td>P</td>
<td>Power</td>
<td>kW</td>
</tr>
<tr>
<td>(p)</td>
<td>Pressure</td>
<td>Pa</td>
</tr>
<tr>
<td>q</td>
<td>Dynamic pressure</td>
<td>Pa</td>
</tr>
<tr>
<td>v</td>
<td>Velocity</td>
<td>m/s</td>
</tr>
<tr>
<td>(S_y)</td>
<td>Yield strength</td>
<td>MPa</td>
</tr>
<tr>
<td>(S_{ut})</td>
<td>Ultimate tensile strength</td>
<td>MPa</td>
</tr>
<tr>
<td>x</td>
<td>Displacement</td>
<td>mm</td>
</tr>
<tr>
<td>T</td>
<td>Torque</td>
<td>Nm</td>
</tr>
</tbody>
</table>

1.2 Dimensionless Roman Values

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_D)</td>
<td>Drag force coefficient</td>
</tr>
<tr>
<td>(C_L)</td>
<td>Lift force coefficient</td>
</tr>
<tr>
<td>Fr</td>
<td>Froude number</td>
</tr>
<tr>
<td>Re</td>
<td>Reynold's number</td>
</tr>
<tr>
<td>St</td>
<td>Strouhal number</td>
</tr>
</tbody>
</table>

1.3 Greek Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>SI Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon)</td>
<td>Kinetic energy dissipation rate</td>
<td>m²/s³</td>
</tr>
<tr>
<td>(\rho)</td>
<td>Density</td>
<td>kg/m³</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Dynamic viscosity</td>
<td>Pa.s</td>
</tr>
<tr>
<td>(\omega)</td>
<td>Frequency of eddy shedding</td>
<td>Hz</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Shear stress</td>
<td>MPa</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Normal stress</td>
<td>MPa</td>
</tr>
<tr>
<td>(\sigma')</td>
<td>Von Mises stress</td>
<td>MPa</td>
</tr>
<tr>
<td>(\nu)</td>
<td>Kinematic viscosity</td>
<td>m³/s</td>
</tr>
</tbody>
</table>

1.4 Dimensionless Greek Values

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>Scale factor</td>
</tr>
<tr>
<td>(\nu)</td>
<td>Possion’s ratio</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Standard deviation</td>
</tr>
</tbody>
</table>
2 Introduction

This project was carried out in conjunction with the Liebherr Group - a worldwide leader in the design and manufacture of heavy machinery, particularly for the maritime industry. Since company inception in 1949, Liebherr’s foremost attribute has been the design of functional superior cranes best suited to customer’s needs. Liebherr Container Cranes, a sub-division of Liebherr Group, are the primary producer of maritime cranes for the company - specialising in the design and manufacture of Ship-to-Shore (STS) cranes.

Due to the large and complex physical nature of the geometry of a STS container crane and the dynamic / unpredictable nature of wind flow, the accurate calculation of wind loads on a crane structure is very difficult, but if achieved would enable designers to accurately determine crane wheel loads and thus loads placed on the crane storm anchor system. Extensive state of the art computational fluid dynamics analysis, complemented by the use of wind tunnel testing, is conducted by the author on a critical section of the crane structure. Analyses of mesh size, mesh type, and turbulence model selection are undertaken to independently characterise developed mathematical model accuracy and grid independence. Key results from analysis and testing determine lower values for drag coefficients on these structures in comparison with those predicted by current standards based utilised methods.
3 Literature Research

3.1 Containerisation-The Concept

Containerisation is the global storage and transportation system, where containers carrying cargo can be easily, efficiently and systematically loaded onto containerships, freight-trains and vehicles, without handling the contents individually \(^2\). Before the inception of containerisation, international trade was a costly process where 25% of the price of goods was attributed to the insuring, transporting, loading, unloading and storing of cargo \(^3\).

The whole shipping process was streamlined by American entrepreneur Malcolm McLean’s Sea-land-Service in the 1950s, which developed an intermodal structure using standardised containers that foresaw the savings in time, labour and costs if the cargo containment part of a truck trailer could be simply lifted on and off the truck chassis and moved directly by ship \(^5\).

Major growth in container volumes has occurred worldwide in the last fifty years, with particular accelerated expansion since the mid-1990s - See Figure 3.3 \(^7\). A UN study \(^8\) estimates annual growth rate for global container trade volumes from 2005 to 2015 to be 7.6 %.

Thinking inside the box

<table>
<thead>
<tr>
<th>World merchandise trade</th>
<th>2012 prices, $trn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1948</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>1.5</td>
</tr>
<tr>
<td>70</td>
<td>3.5</td>
</tr>
<tr>
<td>80</td>
<td>5.5</td>
</tr>
<tr>
<td>90</td>
<td>7.5</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>120</td>
<td>15</td>
</tr>
<tr>
<td>140</td>
<td>20</td>
</tr>
</tbody>
</table>

\(\text{INTERNATIONAL ADOPTION OF CONTAINERS}\)

<table>
<thead>
<tr>
<th>Ports worldwide</th>
<th>1965</th>
<th>1970</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port labour productivity, tonnes per hour</td>
<td>1.7</td>
<td>30.0</td>
</tr>
<tr>
<td>Average ship size, tonnes</td>
<td>8.4</td>
<td>19.7</td>
</tr>
<tr>
<td>Number of loading ports in Europe</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Insurance cost(^1), £ per tonne</td>
<td>0.24</td>
<td>0.04</td>
</tr>
<tr>
<td>Value of goods in transit(^2), £ per tonne</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^1\) \(^2\) \(^3\) \(^7\) \(^8\)
3.2 The Container Crane

3.2.1 Introduction

A ship-to-shore crane is the largest crane used in the operation of the maritime shipping industry \cite{10} and is a common sight in many maritime ports worldwide. Ship-to-shore cranes are designed and constructed for the main function of loading and unloading containers from a container vessel. The crane is controlled by an operator within a cabin, which is attached to the trolley suspended from a beam traversing the span of the crane.

![Ship to Shore Figure 3.4 Liebherr STS Container Crane \cite{1}](Image)

Figure 3.4 Liebherr STS Container Crane \cite{1}

3.2.2 Brief History

In 1959, the world’s first high speed container crane was established - considerably reducing ship turnaround time \cite{11}. Since the loading cycle is repeated many thousands of times, reduction of the length of this cycle has major and direct impact on the productivity of these ports and consequent beneficial economic outcomes \cite{12}. Significant improvements and advancements have been made over time to container cranes - but all modern cranes are direct descendants of this first crane and the blueprint for modern cranes has stayed relatively unchanged \cite{13}.

![Figure 3.5 The First Container Crane \cite{12}](Image)

Figure 3.5 The First Container Crane \cite{12}

![Figure 3.6 Container Crane Size Increase \cite{14}](Image)

Figure 3.6 Container Crane Size Increase \cite{14}
3.3 Challenges

3.3.1 Productivity

The accelerated growth of the maritime transport industry has meant container vessels and cranes have consistently increased in size to manage demand. In the 45 years since the first crane was designed, the dimensions of the cranes and their lifting capacities have more than doubled[15]. The driving force behind the expanding crane sizes has been the building of bigger container ships, which can carry more containers. Today, any port wishing to be at the forefront of container handling is reduced to a minimum operational capacity during the time that a ship is docked in the berth[16]. The transfer of cargo between ships and ground transportation remains an expensive and time consuming process, driving a growing requirement for larger cranes.

3.3.2 Quay Infrastructure

Currently very conservative methods are utilised in the calculation of container crane wind loads and, in many cases, these methods have been found to be impractical and also inaccurate. This approach can lead to a higher crane mass structure and consequently the quay infrastructure must be modified, which can prove very costly.
The crane structure member sizes can be reduced if the wind loads on the structure are proven to be less than those currently calculated, thereby yielding enormous benefits for design and energy efficiency. Furthermore, if the wheel loadings on the quay rails can be reduced, then the quay infrastructure can be designed with greater competence.

3.3.3 Wind-Induced Failure of Crane Components

Container cranes, at their highest point reaching well over 100m, are especially exposed to severe windstorms and thus the wind load acting on the structure is substantial. In many cases, cranes have been severely damaged and even overturned due to losing their stability - as graphically demonstrated in Figure 3.13 \(^{(19)}\).
Crane safety devices, such as the tie-down system, prevent the crane from overturning and being pushed along the quay during extreme weather. However, studies and investigations of wind induced collapses of these cranes have determined that crane tie-down systems are the primary cause of failure and are found to be lacking in their mechanical response - failing at a fraction of the design load \(^{(21)}\).

The currently applied systems are cumbersome for crane workers attempting to set equal tension on these tie-down mechanisms and, due to deflection of the crane from wind loading, can lead to unequal tensile loads on the turnbuckles and give rise to a potential failure mechanism. In a study by maritime insurance provider TT Club, it was estimated that 34% of global asset claims are container crane related. Clearly, there is a requirement for improved safety and operation for container cranes \(^{(22)}\).
3.3.4 Emerging Technology

One area, in which there is particularly growing interest in the design of these cranes, is the application of numerical analysis techniques such as computational fluid analysis (CFD). However little published literature and research in this area exists - as is also the case for validation measures undertaken. The author’s work in both CFD and experimental validation thus forms the backbone for this dissertation.

4 Computational Fluid Dynamics Application

Computational fluid dynamics (CFD) analysis is the solution of the primary equations of fluid motion using numerical methods \[^{[23]}\]. The section of flow and constraining boundaries are segregated into numerous small volumes or cells. The equations describing the conservation of mass, momentum and energy are calculated in each cell. Over the past ten years or so, there have been increasingly rapid advances in the area of CFD, especially in the development of improved numerical algorithms \[^{[24]}\]. These advances have led to a large variety of numerical methods of diverse degrees of sophistication and precision.
4.1 Computational Approach

There are many advantages to using CFD - it complements experimental and analytical methods by delivering an alternative cost effective means of simulating real fluid flows. Developments in CFD (See Figure 4.2) make it a very appealing practical design tool in modern engineering practice \(^{25}\). CFD is thus steadily attracting more attention and awareness.

CFD analysis was conducted by the author on a critical section of the crane structure - a repeating lattice section of the crane derrick boom (Figure 4.4). The complex nature of the lattice structure makes it very difficult to calculate accurately wind load - the results from the undertaken analysis are to be compared with current crane design standards.
4.2 Computational Mesh Quality/Accuracy

Mesh generation is one of the most important steps during the pre-process stage of the CFD process. Model mathematical accuracy is highly dependent on the quality of the mesh developed. “Both numerical stability and accuracy could be affected by a poor quality grid” [26]. In the developed CFD models, extensive analysis was undertaken by the author on the CFD mesh to ensure optimal achievement of the most accurate results.
Table 4.1 CFD Mesh Statistical Analysis - B.Hand 2014

<table>
<thead>
<tr>
<th>Mesh Density</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Average</th>
<th>Standard Derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>1.1706</td>
<td>10591</td>
<td>3.100</td>
<td>34.869</td>
</tr>
<tr>
<td>Medium</td>
<td>1.1669</td>
<td>364.85</td>
<td>2.288</td>
<td>3.248</td>
</tr>
<tr>
<td>Fine</td>
<td>1.1713</td>
<td>61642</td>
<td>2.119</td>
<td>88.095</td>
</tr>
<tr>
<td>Well Refined</td>
<td>1.1659</td>
<td>217.11</td>
<td>1.941</td>
<td>1.089</td>
</tr>
</tbody>
</table>

Figure 4.8 3D Mesh Intensity Detail - B.Hand 2014

Figure 4.9 Optimal CFD Mesh Quality - B.Hand 2014

Figure 4.10 Iterative Analysis undertaken - B.Hand 2014

Note - Refer to Appendix: B for full mesh quality measures undertaken.
4.3 Applicable CFD Model Algorithm

The next and most integral part of the CFD analysis procedure is to research, analyse, choose and apply CFD mathematical model algorithms to accurately calculate results for the undertaken analysis. To achieve this, the author systematically analysed and compared three appropriate models for suitability for the developing analysis.

![Standard k-ε model](image1)

![Realisable k-ε model](image2)

![SST model](image3)

Figure 4.11 Diagrammatic Comparison of CFD Model Selection - B.Hand 2013
This CFD model comparison allowed the most suitable model to be chosen for this analysis. Grid independence studies were conducted on the generated CFD mesh to ensure the results were convergent. Model mesh density was refined to achieve strict convergence criteria.
4.5 Numerical Results

Examination of the CFD results on the boom section reveals a considerable concentration of static pressure on the bottom section of the boom (Figure 4.16). This static pressure concentration is mainly caused by the shape of the rectangular faced section of the concerned I-beam box section (See Figure 4.17), critically required for the rigidity and strength of the structure.

The static pressure developing on the structure varies greatly with wind velocity. At two main set points of 20m/s and 40m/s, the maximum pressure is 0.78K KPa and 2.02 KPa respectively. Flow separation and wake formation is observed - mainly occurring around this part of the structure. Examination of generated CFD models leads to the conclusion that this separation is initiated by the relatively sharp corners on the beam. One minor but reasonably straightforward design modification is to ensure a well defined filleted edge is present at this location – thereby delaying the flow separation point to further downstream and improving the structure aerodynamics.
5 Wind Tunnel Testing

5.1 Overview

Wind tunnel testing on a scaled model was determined to be the best method to validate the CFD results found from the analysis. Even though this type of testing has been utilised since the early twentieth century, engineers and designers today, equipped with state of the art computers, still rely on the testing of models to verify computer data and determine baseline performance[26].

Figure 5.1 Wind Tunnel Test Methodology Adopted- B.Hand 2014
5.2 Scale Model Similitude Theory

5.2.1 Scaling Laws

Testing is carried out on a scaled model according primarily to Froude’s Scaling Law.

Table 5.1 Froude Scaling Factors - B.Hand 2014

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unit</th>
<th>Scale Factor</th>
<th>Model : Prototype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>L</td>
<td>(\lambda)</td>
<td>1:28</td>
</tr>
<tr>
<td>Force</td>
<td>MLT(^{-2})</td>
<td>(\lambda^3)</td>
<td>1:21,952</td>
</tr>
<tr>
<td>Velocity</td>
<td>LT(^{-1})</td>
<td>(\frac{1}{\lambda^2})</td>
<td>1: 5.292</td>
</tr>
</tbody>
</table>

It is impossible to achieve both Froude and Reynold’s scaling simultaneously in a specific model test but, taking specific scaling conditions, the testing can be undertaken independent of Reynold’s number.

5.2.2 Model Test Conditions

1. The model will have sharp edges so flow separation occurs.
2. The flow stream must be turbulent.
3. Reynold’s number must be kept sufficiently high.
5.3 Physical Model

5.3.1 Scaling Conditions

A 1/28 scaled model of the critical crane section was generated by the development of a detailed 3D CAD solid model by the author. The developed solid model enabled the physical production of the scaled wind tunnel model (ABS material) on the college advanced rapid prototyping facility.

In-depth design analysis was conducted by the author to ensure that the model would be capable of withstanding the drag forces created from wind tunnel testing. This pre-testing structural analysis was undertaken through finite element analysis. Further minor design modifications to facilitate practical testing were made to the model. (See Figure 5.4)

<table>
<thead>
<tr>
<th>Young’s Modulus (E)</th>
<th>Possions Ratio (v)</th>
<th>Shear Modulus (G)</th>
<th>Density (ρ)</th>
<th>Yield Strength (S_y)</th>
<th>Tensile Strength (S_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 GPa</td>
<td>0.38</td>
<td>950.277 MPa</td>
<td>1060 Kg m$^{-3}$</td>
<td>40.33 MPa</td>
<td>40 MPa</td>
</tr>
</tbody>
</table>

Table 5.2 ABS Material Properties

Figure 5.3 3D CAD Generated 3D Solid Model and Physical Rapid Prototyped Model (ABS material) - B.Hand 2014

Figure 5.4 Developed Scale Model Testing Attachment Design and Implementation - B.Hand 2014
5.3.2 Finite Element Analysis

Figure 5.5 Analysis Boundary Conditions – B.Hand 2014

Figure 5.6 Design Mesh Detail – B.Hand 2014

Figure 5.7 Equivalent Stress on Testing Model Design (MPa) – B.Hand 2014

Figure 5.8 Equivalent Stress vs Predicted Drag Force for Design – B.Hand 2014

Low Generated Stresses
5.4 Wind Tunnel Test

The wind tunnel model testing was carried out using the college’s open circuit type subsonic wind tunnel with a working test section of 300mm × 300mm. The air enters the tunnel through a carefully shaped inlet - the working section is transparent giving full visibility during the testing (See Figure 5.9).

“To gain accurate and trustworthy data from a testing apparatus, a proper data acquisition system is required” [27]. Data acquisition (DAQ) is the method of measuring an electrical generated signal such as a voltage from a device known as a transducer. In this case, the load cell on the force balance is connected to a data acquisition system - the VDAS (Versatile Data Acquisition System) - which is compatible with the wind tunnel load cell. This system offers many advantages such as reducing the time needed to physically collect data and also lower the chance of errors taking place when inputting data to a computer manually. The system can also allow for high speed data collection.

Figure 5.9 Wind Tunnel Test Facility – B.Hand 2014

Data acquisition system

Figure 5.10 Data Acquisition System [28]

VDAS System [28]

Note - Refer to Appendix: C for Calibration procedures undertaken and numerical results

Figure 5.11 VDAS System [28]
Using the developed and commissioned experimental setup shown in Figures 5.12, 5.13 and 5.14, baseline wind tunnel testing commenced on the scale model.
Comprehensive experimental analysis of the aerodynamic flow patterns around the structure, including smoke visualisation coupled aerodynamic tufts, was performed by the author.
On achievement of baseline results through wind tunnel testing on the physical model, corresponding CFD analysis and model results comparison was undertaken.

- **Figure 5.18** CFD Plot showing Rapid Velocity Distribution – B.Hand 2014
- **Figure 5.19** CFD Plot showing Turbulence Intensity on Model – B.Hand 2014
- **Figure 5.20** Comparison of Model Results – B.Hand 2014
Figure 5.21 shows the results for drag on the full scale crane structure with respect to the various analytical and experimental tools used. A significant deviation between the results in comparison with the current utilised standardised numerical approach is clearly observed.

Figure 5.22 Deviation between Experimental and Numerical Results – B.Hand 2014
Generally, in analytical terms, the designer or analyst will mainly focus on the drag coefficient for the structure section and ultimately determine the wind force generated - so the need for accurate drag coefficient determination is paramount. Figure 5.23 shows a graphical representation of drag coefficients (C_d) computed from different means by the author with respect to the current standard approach. It was determined from this analysis that the (C_d) values were found to be significantly lower than those predicted by current standard approach. In effect, the wind loads calculated for these structures are being substantially overestimated. Achievement of lower force values confers further benefits to the designer - including optimal use of material and better control of factor of safety values applied to the structure. The reduction in values is also advantageous to the goal of minimisation of the overall weight of cranes - an increasing concern for designers of the foundations of quays and supporting structure at the base of the cranes as these cranes continue to increase in size.
6 Design Optimisation

6.1 Overview

The potential for design optimisation is examined by the author in relation to critical crane tie-down anchor system, which is significantly affected by fluctuating wind loading. The crane tie down system prevents the crane from becoming detached during high winds or storms and resists the uplift forces created from wind flow over the crane. The current system has problems - it is cumbersome for the crane workers to set equal tension on these tie-down mechanisms and, due to deflection of the crane from wind loading, can lead to unequal tensile loads on the turnbuckles and give rise to a potential failure mechanism.

A redesign of this critical crane component was undertaken. A systematic design approach was adopted by the author to achieve design optimisation of the component (Figure 6.3 depicts key aspects of the systematic design - extended versions are given in Appendix D).
6.2 Systematic Design

6.2.1 Design Iterations

A number of diverse designs concepts were investigated by the author to determine the most suitable design for this purpose. (Outlined in Appendix D is the rating table upon which the optimum design was chosen).

Figure 6.4 Design Requirements - B.Hand 2014

Figure 6.5 Iterative Design Approach - B.Hand 2014
Extreme Weather Conditions
Novel Tie-Down System for
Ship to Shore Cranes

Figure 6.6 Design Concept 1 - B.Hand 2014

Figure 6.7 Design Concept 2 - B.Hand 2014

Figure 6.8 Design Concept 3 - B.Hand 2014
The adopted systematic design approach concluded Design Concept 3 to be the most suitable design solution for this application - See Figure 6.9 for Solid Model Depiction of Function and Operation of this novel Tie Down System - (Outlined also in Appendix D is the material selection process used for the design).
6.2.2 Functional Analysis

To ensure the novel tie-down design was mechanically and structurally safe with a suitable factor of safety, the design was implemented in accordance with the standard BS 2573 Pt 1: 1983 Rules For Design of Cranes: Specification for Classification stress Calculations and design criteria for structures. This standard contains a set of rules for carrying out calculations and applying factors for allowable stresses to be used for the grade of materials. Critically and centrally, design calculations were conducted to allow the determination of the maximum uplift force the tie-downs would have to resist - derived from the author developed wind tunnel testing and CFD analysis.

![Figure 6.10 Design Load Analysis - B.Hand 2014](image)

![Figure 6.11 Effective generation of tensile loads via effective torque setting – B.Hand 2014](image)
6.3 Finite Element Analysis (FEA)

FEA was carried out by the author on the developed tie-down mechanism in two loading situations - (1) in direct loading situation while under a tensile load and (2) during the tightening phase where a torque is applied on the turnbuckle. This analysis allows examination of the stresses and deflections in the design and to determine if these values are within acceptable limits for the design.

![Finite Element Analysis Methodology](image1)

![FEA Mesh Detail on Developed Tie-Down System](image2)

![Convergence of FEA Results](image3)
6.3.1 Torsional Loading Analysis

![Diagram of Torsional Loading Analysis](image)

Figure 6.15 Boundary Conditions for Torque Applied Load Case - B.Hand 2014

![Diagram of Equivalent Stress](image)

Figure 6.16 Equivalent Stress (MPa) - B.Hand 2014
6.3.2 Direct Tensile Loading Analysis

Figure 6.17 Displacement (mm) due to Applied Torque - B.Hand 2014

Figure 6.18 Boundary Conditions for Direct Tensile Load Case - B.Hand 2014
6.3.2 FEA Results

Table 6.1 FEA Primary Torque Results - B.Hand 2014

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum Equivalent Stress</th>
<th>Maximum Shear Stress</th>
<th>Max Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnitude</td>
<td>87.98 MPa</td>
<td>50.796 MPa</td>
<td>2.709 mm</td>
</tr>
<tr>
<td>FOS</td>
<td>4</td>
<td>3.5</td>
<td>Low Displacement</td>
</tr>
</tbody>
</table>

Table 6.2 FEA Primary Tensile Load Results – B.Hand 2014

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum Equivalent Stress</th>
<th>Maximum Shear Stress</th>
<th>Max Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnitude</td>
<td>96.62 MPa</td>
<td>49.81 MPa</td>
<td>0.934 mm</td>
</tr>
<tr>
<td>FOS</td>
<td>3.7</td>
<td>3.6</td>
<td>Low Displacement</td>
</tr>
</tbody>
</table>

Examination of the results from the undertaken FEA analysis loads cases determined that critical stresses and displacements on the new product were within acceptable limits. Photoclasticity testing was then undertaken to experimentally validate the developed finite element models used to determine these critical design parameters.
6.4 Photoelasticity Analysis

6.4.1 Outline

Photoelasticity is an experimental technique used to determine the stress distribution in a part where common mathematical procedures can become tedious and unpredictable. Photoelasticity gives a full body picture of the stress distribution in a component unlike that possible with analytical calculations. One of the primary advantages of this method is that it is a full field measurement and allows the determination of the critical stress concentration points in a model and is very much suited to irregular shapes and geometries such as in this particular design case.

Calibration test pieces and a physical test piece were machined by the author from PSM birefringent material. Careful attention had to be paid in the manufacture of both calibration and test pieces to the speed of machining of the material as chipping would create stress raisers - furthermore, heat generated had to be adequately alleviated.
A customised testpiece support rig was designed and manufactured by the author in order to achieve a realistic and practical recreation in the photoelastic test apparatus of the loading of the tie-down system.
6.4.2 Testing

Figure 6.24 Photoelastic Test Setup - B.Hand 2014

Figure 6.25 Graphical Comparison of FEA and Photoelasticity Results – B.Hand 2014

Figure 6.26 Diagrammatic Comparison of FEA and Photoelasticity Techniques – B.Hand 2014
6.5 Prototype Development

6.5.1 Manufacture/Instrumentation

Good correlation was achieved between finite element analytical and photoelastic experimental results (See Figures 6.25 and 6.26), leading to a high degree of confidence in the underlying design calculations for the developing novel tie-down system.

To examine the functionality of the redesign, a prototype of the tie-down was manufactured as shown in Figure 6.27. (Further details of prototype manufacture are in Appendix D).

A Tie-Down Prototype Proof of Concept Test Rig was also designed, developed and commissioned (see Figure 6.27).

Bonded strain gauges were applied to the prototype (see Figure 6.28) to experimentally measure the torque to tensile force generated in the design.
6.5.2 Prototype Testing

Using compatible experimental test software *Strain Smart*, the loading of the prototype was undertaken and experimental measurement recorded and analysed.

Good correlation (see Figure 6.31) was achieved between experimental and calculated torque to pre-load conversion in the developed prototype tie-down system.
7. Financial/Commercial Benefits

Port performance is influenced by a number of container terminal operations including:

- Vessel berthing operation
- Crane unloading/loading operation
- Delivery operation by trucks
- Storage operation

The STS crane operation is the most important operation for port terminal logistics - it has been estimated that STS crane operation constitutes 70% of vessel berthing time \([30]\). Any improvements in this efficiency have very significant implications for effectiveness and turnaround of a major port.

Based on the in-depth analysis and validation undertaken, it has been established that current wind load structure calculations are overestimated by almost 15%, a very significant figure indeed. The analysis has also determined areas in which structure wind loads can be reduced further by streamlining and modifying geometry, while still maintaining structural integrity.

![Efficient STS Cranes are Crucial for Effective Port Operations](image1.jpg)

Figure 7.1 Efficient STS Cranes are Crucial for Effective Port Operations \([1]\)

![Use of CFD to Reduce STS Crane Wind Loads](image2.jpg)

Figure 7.2 Use of CFD to Reduce STS Crane Wind Loads - B.Hand 2014
STS cranes are the workhorses in port operations - being used around the clock. Any improvements in design and efficiency will have significant associated benefits.
A comprehensive case study was undertaken by the author to quantify the potential savings and efficiency gains from the conducted analyses. Table 7.1 summaries the case study on three typical sized cranes currently produced with increased concentration on larger cranes (See Appendix D for dimensions). Operational data was received from Liebherr in relation to current cranes operating in ports worldwide. Respective crane masses and energy consumption in moving these cranes along quays during operation were acquired.

Based on experimental and numerical analyses, substantial material savings were determined. Mathematical spreadsheets were created to calculate energy consumption during crane movements along quays via numerical integration methods. It was established that, on average, the cranes operated in this manner for 1,000 hrs annually and accordingly significant savings in energy and reductions in CO₂ emissions were found due to reduced mass.
Significant savings in energy and running costs are determined for each crane configuration relative to size. CO₂ emissions from the global shipping industry account for around one billion tonnes a year and must be reduced considerably over the coming years. The study undertaken by the author demonstrates that emissions can be reduced greatly by introducing the desired changes acquired from the analysis. These benefits are amplified as STS cranes gain predominance in ports worldwide.
Conclusion

The initial challenge of this project has been comprehensively achieved – full numerical and experimental critical crane section wind loading analysis has been conducted and validated with results showing good correlation.

A principal finding from this investigation is that both of the employed numerical and experimental methodologies predicted drag coefficients to be significantly lower for this type of structure than those predicted in the current standards based design approach. This finding raises a significant question mark in relation to the suitability of the current standards in relation to their accuracy of quantifying wind loading on these structures. This study conclusion thus provides evidence to support the opinion of crane designers that current standards are not entirely suitable for container crane geometry.

The study also points to the accuracy of CFD analysis in the application of crane design and the many benefits associated with this software for an engineer or designer wishing to diverge from the standardised approach. From the analysis and testing, it was established that significant potential savings could be found from optimised design in the form of reduction in energy and material usage. This saving is critically important to port operations worldwide as major ports are expected to increase output significantly in the coming years and must comply with strict legislation especially with CO₂ emissions targets as finite fossil fuels resources continue to exponentially decline and the price of energy correspondingly increases.

Figure 8.1 Liebherr Super Post-Panamax STS Container Cranes Operating at Port of Southampton, United Kingdom

43
Extensive progress has been made in improving the safety and design functionality of an important crane component, which is highly influenced by fluctuating wind loads (using the tools and design philosophy investigated and advanced by the author).

A novel tie-down system, incorporating equalising beam and torque adjustable features, has been designed and developed. The developed system is specifically designed to prevent unequal tensile loads on the turnbuckles and consequent potential failure mechanisms, which for ship to shore cranes can be life threatening, function disruptive, crane/quay structure damaging and hugely costly. Prototype manufacture and proof of concept testing of the novel tie-down system has been successfully undertaken.

Recommendations for future work include further advanced analysis of STS container crane geometry and investigation into application of drag reduction measures. More extensive validation testing, manufacture and implementation of working tie-down system is to be undertaken.

All project findings and results have been presented to the Liebherr Group on conclusion of the project. Liebherr response has been very positive - particularly with respect to the work undertaken in structural CFD analysis and wind tunnel testing and the potential for implementation of these methodologies into the design process (Appendix-A outlines the response from the Liebherr Chief Design Engineer).

The application of numerical analysis and model testing in STS container crane design has proven to be a very challenging but also greatly rewarding opus. The work undertaken by the author indicates the importance of these growing technologies as a very powerful and practical design tool - pointing the way forward to exciting and beneficial innovations in maritime crane development.
References

[18] GEER, 2002. Port Facilities and Artificial Islands: 3.2.3 Damage to Port Structure and adjacent Facilities: Plastically yielded crane legs due to about 2 m of spreading between crane rails as a consequence of lateral caisson displacement. Available Online at

[31] Liebherr Group, 2014. Operational data and statistical port data obtained for project studies.

[35] EC (European Commission), 2013. Time for international action on CO₂ emissions from shipping: The shipping sector’s contribution to climate change: Rapid growth in CO₂ emissions from international shipping
Bibliography

Appendices

Appendix A - Project Feedback from Liebherr

LIEBHERR

Liebherr Container Cranes Ltd., Killarney, Co. Kerry, Republic of Ireland.

Attention: Brian Hand

Your ref.: Js

Date: 4th June, 2014

From the desk of:

James Scanlon

Telephone: ++353 64 6670200
Fax: ++353 64 6631602
james.scanlon@liebherr.com

RE: “An Analysis into wind induced loading Effects on a STS crane and Investigation into Design Optimisation”

Dear Brian,

On behalf of Liebherr Container Cranes I would like to congratulate you upon completion of an outstanding final year project. In many respects the project is a true masterpiece with useful results which could be utilised to design/manufacture more efficient container handling equipment.

As the use of CFD and wind tunnel analysis for crane structural design is a new approach for Liebherr, the merits of adopting this technology are clear based on the results of your studies. The current standards typically used in the industry are deemed conservative when applied. The benefits of having more accurate drag coefficients for these complex structures will effectively streamline the efficiency of the crane’s structural design with the following benefits:

- Lighter crane structures due to lower wind coefficient being applied.
- Reduce crane manufacture cost which will help increase market share.
- Greener crane design as less material required thus lowering the crane’s carbon footprint.
- Lower wheel loading, thus help reduce demands on quay civil structures.
- Lower crane tie down and storm pin loadings.

The analysis/results outlined in your research report will prove beneficial for Liebherr to pioneer technical advancement in future projects for Quay Crane designs.

We again compliment you on your work produced to date on the above subject matter and wish you the very best for your future studies.

Yours faithfully,

LIEBHERR CONTAINER CRANES LTD.

James Scanlon
(Chief Design Engineer)
Appendix B – Extended CFD Analysis Versions

The Mesh

Figure B1 CFD Mesh Detailed Views – B.Hand 2014

Figure B2 CFD Mesh Statistical Values – B.Hand 2014
Table B1 CFD Mesh Size variation – B.Hand 2014

<table>
<thead>
<tr>
<th>Mesh Density</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Average</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>8.72E-04</td>
<td>0.999</td>
<td>0.725</td>
<td>0.202</td>
</tr>
<tr>
<td>Medium</td>
<td>2.44E-03</td>
<td>0.999</td>
<td>0.780</td>
<td>0.165</td>
</tr>
<tr>
<td>Fine</td>
<td>7.94E-03</td>
<td>1.000</td>
<td>0.822</td>
<td>0.119</td>
</tr>
<tr>
<td>Well Refined</td>
<td>6.72E-05</td>
<td>1.000</td>
<td>0.816</td>
<td>0.125</td>
</tr>
</tbody>
</table>

Table B2 CFD Mesh Quality Analysis – B.Hand 2014

<table>
<thead>
<tr>
<th>Mesh Density</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Average</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>1.33E-03</td>
<td>1.000</td>
<td>0.374</td>
<td>0.241</td>
</tr>
<tr>
<td>Medium</td>
<td>2.42E-04</td>
<td>1.000</td>
<td>0.299</td>
<td>0.197</td>
</tr>
<tr>
<td>Fine</td>
<td>4.53E-04</td>
<td>1.000</td>
<td>0.255</td>
<td>0.153</td>
</tr>
<tr>
<td>Well Refined</td>
<td>1.25E-03</td>
<td>1.000</td>
<td>0.246</td>
<td>0.145</td>
</tr>
</tbody>
</table>
Appendix C – Extended Wind Tunnel Testing Versions

Calibration

Before any testing could be conducted, it was essential that the wind tunnel test equipment was calibrated before the experimentation had begun. It was imperative that the model received an even velocity distribution in the wind tunnel. To achieve this suitable experimentation was conducted to size the model.

![Manometer and Pitot Tube](image)

Figure C1 Velocity Measurement of Wind Tunnel – B.Hand 2014

Combined with the experimental measurement, theoretical calculation of the wind tunnel boundary layer was established.

![Velocity Distribution in Wind Tunnel](image)

Figure C2 Wind Tunnel Velocity Measurement - B.Hand 2014

![Boundary Layer Thickness & Wall Shear Stress](image)

Figure C3 Calculated Wind Tunnel Boundary Layer - B.Hand 2014
Model Wind Tunnel Test Results

The testing on the model was conducted three times to ensure the utmost accuracy was guaranteed and possible sources of error could be eliminated. Shown in Table A1 are the results that were recorded from the testing. Mean and standard deviation between the results have been calculated.

<table>
<thead>
<tr>
<th>Velocity (m/s)</th>
<th>Measurement 1</th>
<th>Measurement 2</th>
<th>Measurement 3</th>
<th>Average</th>
<th>Standard Deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0.008</td>
<td>0.034</td>
<td>0.018</td>
<td>0.020</td>
<td>0.013</td>
</tr>
<tr>
<td>2.00</td>
<td>0.069</td>
<td>0.102</td>
<td>0.041</td>
<td>0.071</td>
<td>0.031</td>
</tr>
<tr>
<td>3.00</td>
<td>0.168</td>
<td>0.208</td>
<td>0.132</td>
<td>0.169</td>
<td>0.038</td>
</tr>
<tr>
<td>4.00</td>
<td>0.251</td>
<td>0.333</td>
<td>0.230</td>
<td>0.271</td>
<td>0.054</td>
</tr>
<tr>
<td>5.00</td>
<td>0.523</td>
<td>0.449</td>
<td>0.377</td>
<td>0.449</td>
<td>0.073</td>
</tr>
<tr>
<td>6.00</td>
<td>0.764</td>
<td>0.724</td>
<td>0.496</td>
<td>0.661</td>
<td>0.144</td>
</tr>
<tr>
<td>7.00</td>
<td>0.946</td>
<td>1.018</td>
<td>0.778</td>
<td>0.914</td>
<td>0.123</td>
</tr>
<tr>
<td>8.00</td>
<td>1.256</td>
<td>1.283</td>
<td>0.974</td>
<td>1.171</td>
<td>0.171</td>
</tr>
<tr>
<td>9.00</td>
<td>1.415</td>
<td>1.580</td>
<td>1.269</td>
<td>1.421</td>
<td>0.155</td>
</tr>
<tr>
<td>10.00</td>
<td>1.736</td>
<td>1.970</td>
<td>1.428</td>
<td>1.711</td>
<td>0.272</td>
</tr>
<tr>
<td>11.00</td>
<td>2.106</td>
<td>2.099</td>
<td>1.866</td>
<td>2.024</td>
<td>0.137</td>
</tr>
<tr>
<td>12.00</td>
<td>2.494</td>
<td>2.354</td>
<td>2.377</td>
<td>2.408</td>
<td>0.075</td>
</tr>
<tr>
<td>13.00</td>
<td>2.653</td>
<td>2.515</td>
<td>2.712</td>
<td>2.627</td>
<td>0.101</td>
</tr>
<tr>
<td>14.00</td>
<td>3.244</td>
<td>3.026</td>
<td>2.998</td>
<td>3.089</td>
<td>0.135</td>
</tr>
<tr>
<td>15.00</td>
<td>3.595</td>
<td>3.308</td>
<td>3.663</td>
<td>3.522</td>
<td>0.188</td>
</tr>
<tr>
<td>16.00</td>
<td>4.269</td>
<td>4.046</td>
<td>3.793</td>
<td>4.036</td>
<td>0.238</td>
</tr>
<tr>
<td>17.00</td>
<td>4.884</td>
<td>4.272</td>
<td>4.500</td>
<td>4.552</td>
<td>0.310</td>
</tr>
<tr>
<td>18.00</td>
<td>5.347</td>
<td>5.116</td>
<td>5.200</td>
<td>5.221</td>
<td>0.117</td>
</tr>
<tr>
<td>19.00</td>
<td>5.648</td>
<td>5.116</td>
<td>5.938</td>
<td>5.567</td>
<td>0.417</td>
</tr>
<tr>
<td>20.00</td>
<td>5.981</td>
<td>5.955</td>
<td>5.904</td>
<td>5.947</td>
<td>0.039</td>
</tr>
</tbody>
</table>
Figure C4 Statistical Analysis of Wind Tunnel Test Results - B.Hand 2014

Figure C5 Standard Deviation of Wind Tunnel Test Results - B.Hand 2014
CFD Analysis of Wind Tunnel Model

Using the scaling capabilities in ANSYS Fluent 14, the full scale model was scaled down to the model size used in the wind tunnel by using a scaling factor of 28.

This approach allowed all the features of the model and the CFD mesh to be scaled without distortion.

The four grid types used in the full scale analysis were scaled down - to ensure the results achieved at the model scale were also grid independent.

Table C2 CFD Model Grid Independence Study - B.Hand 2014

<table>
<thead>
<tr>
<th>Mesh Relevance</th>
<th>Coarse</th>
<th>Medium</th>
<th>Fine</th>
<th>Enhanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid Elements</td>
<td>119960</td>
<td>180067</td>
<td>402221</td>
<td>489858</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wind Velocity</th>
<th>Drag Force (N)</th>
<th>%</th>
<th>Drag Force (N)</th>
<th>%</th>
<th>Drag Force (N)</th>
<th>%</th>
<th>Drag Force (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.103</td>
<td>2.180</td>
<td>0.101</td>
<td>1.076</td>
<td>0.102</td>
<td>0.944</td>
<td>0.100</td>
</tr>
<tr>
<td>4</td>
<td>0.405</td>
<td>6.073</td>
<td>0.379</td>
<td>1.404</td>
<td>0.387</td>
<td>0.735</td>
<td>0.382</td>
</tr>
<tr>
<td>6</td>
<td>0.853</td>
<td>7.880</td>
<td>0.793</td>
<td>1.548</td>
<td>0.803</td>
<td>0.304</td>
<td>0.791</td>
</tr>
<tr>
<td>8</td>
<td>1.474</td>
<td>7.835</td>
<td>1.366</td>
<td>0.885</td>
<td>1.379</td>
<td>0.066</td>
<td>1.367</td>
</tr>
<tr>
<td>10</td>
<td>2.277</td>
<td>8.809</td>
<td>2.083</td>
<td>0.936</td>
<td>2.113</td>
<td>0.483</td>
<td>2.093</td>
</tr>
<tr>
<td>12</td>
<td>3.240</td>
<td>8.640</td>
<td>2.955</td>
<td>0.570</td>
<td>2.999</td>
<td>0.926</td>
<td>2.982</td>
</tr>
<tr>
<td>14</td>
<td>4.360</td>
<td>8.217</td>
<td>3.995</td>
<td>0.421</td>
<td>4.046</td>
<td>0.829</td>
<td>4.029</td>
</tr>
<tr>
<td>16</td>
<td>5.684</td>
<td>8.516</td>
<td>5.189</td>
<td>0.515</td>
<td>5.265</td>
<td>0.932</td>
<td>5.238</td>
</tr>
</tbody>
</table>

Overall Percent Difference (%)

| | 7.27 | 0.92 | 0.65 |
Model Results Comparison

After completing the post-processing of the results from the CFD model analysis, it was now possible to compare these results from the experimentally wind tunnel testing and the reference hand calculation as documented in Table A3.

<table>
<thead>
<tr>
<th>Airflow Velocity (m/s)</th>
<th>CFD Drag (N)</th>
<th>Difference (%)</th>
<th>σ</th>
<th>Wind Tunnel Test (N)</th>
<th>Difference (%)</th>
<th>σ</th>
<th>Hand Calculation (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.100</td>
<td>26.904</td>
<td>0.015</td>
<td>0.071</td>
<td>9.898</td>
<td>0.006</td>
<td>0.079</td>
</tr>
<tr>
<td>4</td>
<td>0.382</td>
<td>21.079</td>
<td>0.047</td>
<td>0.271</td>
<td>14.023</td>
<td>0.031</td>
<td>0.315</td>
</tr>
<tr>
<td>6</td>
<td>0.791</td>
<td>11.476</td>
<td>0.058</td>
<td>0.661</td>
<td>6.810</td>
<td>0.034</td>
<td>0.709</td>
</tr>
<tr>
<td>8</td>
<td>1.367</td>
<td>8.407</td>
<td>0.075</td>
<td>1.171</td>
<td>7.130</td>
<td>0.064</td>
<td>1.261</td>
</tr>
<tr>
<td>10</td>
<td>2.093</td>
<td>6.230</td>
<td>0.087</td>
<td>1.711</td>
<td>13.156</td>
<td>0.183</td>
<td>1.970</td>
</tr>
<tr>
<td>12</td>
<td>2.982</td>
<td>5.119</td>
<td>0.103</td>
<td>2.408</td>
<td>15.125</td>
<td>0.303</td>
<td>2.837</td>
</tr>
<tr>
<td>14</td>
<td>4.029</td>
<td>4.329</td>
<td>0.118</td>
<td>3.089</td>
<td>20.007</td>
<td>0.546</td>
<td>3.862</td>
</tr>
<tr>
<td>16</td>
<td>5.238</td>
<td>3.849</td>
<td>0.137</td>
<td>4.036</td>
<td>19.981</td>
<td>0.713</td>
<td>5.044</td>
</tr>
</tbody>
</table>

Average | 10.924% | 0.080N | 13.266% | 0.235N |
Full Scale Results

Table C4 Full Scale Results for Crane Section - B.Hand 2014

<table>
<thead>
<tr>
<th>Velocity (m/s)</th>
<th>CFD (Scaled up Model) (N)</th>
<th>CFD (Full Scale) (N)</th>
<th>Wind Tunnel Test (N)</th>
<th>Hand Calculation (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>566.36</td>
<td>398.40</td>
<td>323.355</td>
<td>386.16</td>
</tr>
<tr>
<td>10</td>
<td>2076.15</td>
<td>1481.60</td>
<td>1259.73</td>
<td>1544.66</td>
</tr>
<tr>
<td>20</td>
<td>7356.68</td>
<td>5795.00</td>
<td>5603.88</td>
<td>6178.63</td>
</tr>
<tr>
<td>30</td>
<td>15651.81</td>
<td>12957.30</td>
<td>12870.23</td>
<td>13901.92</td>
</tr>
<tr>
<td>40</td>
<td>26961.54</td>
<td>22931.60</td>
<td>22611.18</td>
<td>24714.53</td>
</tr>
<tr>
<td>50</td>
<td>41285.87</td>
<td>35831.20</td>
<td>34379.13</td>
<td>38616.45</td>
</tr>
<tr>
<td>60</td>
<td>58624.8</td>
<td>51531.20</td>
<td>47726.48</td>
<td>55607.68</td>
</tr>
</tbody>
</table>

Table C5 Drag Coefficients Determined by Diverse Methods - B.Hand 2014

<table>
<thead>
<tr>
<th>Wind Velocity (m/s)</th>
<th>CFD Model (Scaled up model) (C_D)</th>
<th>CFD (Full Scale) (C_D)</th>
<th>Wind Tunnel Test (C_D)</th>
<th>Hand Calculation (C_D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.49</td>
<td>1.75</td>
<td>1.42</td>
<td>1.70</td>
</tr>
<tr>
<td>10</td>
<td>2.28</td>
<td>1.63</td>
<td>1.39</td>
<td>1.70</td>
</tr>
<tr>
<td>20</td>
<td>2.02</td>
<td>1.59</td>
<td>1.54</td>
<td>1.70</td>
</tr>
<tr>
<td>30</td>
<td>1.91</td>
<td>1.58</td>
<td>1.57</td>
<td>1.70</td>
</tr>
<tr>
<td>40</td>
<td>1.85</td>
<td>1.58</td>
<td>1.56</td>
<td>1.70</td>
</tr>
<tr>
<td>50</td>
<td>1.82</td>
<td>1.58</td>
<td>1.51</td>
<td>1.70</td>
</tr>
<tr>
<td>60</td>
<td>1.79</td>
<td>1.58</td>
<td>1.46</td>
<td>1.70</td>
</tr>
<tr>
<td>Average</td>
<td>2.03</td>
<td>1.61</td>
<td>1.49</td>
<td>1.70</td>
</tr>
</tbody>
</table>

Figure C7 Curve Fitting Techniques Utilised - B.Hand 2014
Figure C8 Crane Structural Geometry- Photos by B.Hand
Design Optimisation Extended Versions

Problem Statement: Tie-down Design Optimisation

<table>
<thead>
<tr>
<th>#</th>
<th>Demand/Wish (D) / (W)</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>Must exert correct tensile force</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>Must resist deformation</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>Must have accurate tightening system</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>Must be light weight</td>
</tr>
<tr>
<td>5</td>
<td>W</td>
<td>Portable</td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>Long service life (20 years)</td>
</tr>
<tr>
<td>7</td>
<td>D</td>
<td>Operate in all weather conditions</td>
</tr>
<tr>
<td>8</td>
<td>D</td>
<td>Must be corrosive resistant</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>Easily maintained (lubrication)</td>
</tr>
<tr>
<td>10</td>
<td>D</td>
<td>Must give indicated tension exerted</td>
</tr>
<tr>
<td>11</td>
<td>W</td>
<td>Easily operated</td>
</tr>
<tr>
<td>12</td>
<td>W</td>
<td>Low centre of gravity</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
<td>Integrated system to allow equalizing of tensile forces</td>
</tr>
<tr>
<td>14</td>
<td>D</td>
<td>Easily adjusted for different situations</td>
</tr>
<tr>
<td>15</td>
<td>W</td>
<td>Interchangeable parts</td>
</tr>
<tr>
<td>16</td>
<td>D</td>
<td>Adequate safety features</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>High quality components & materials</td>
</tr>
<tr>
<td>18</td>
<td>D</td>
<td>Efficient production time</td>
</tr>
<tr>
<td>19</td>
<td>D</td>
<td>Relatively Inexpensive</td>
</tr>
<tr>
<td>20</td>
<td>W</td>
<td>Production using CNC</td>
</tr>
<tr>
<td>21</td>
<td>W</td>
<td>Minimise waste</td>
</tr>
<tr>
<td>22</td>
<td>W</td>
<td>Reduce complexity in manufacture</td>
</tr>
</tbody>
</table>
Table D2 Design Selection Matrix - B.Hand 2014

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weight (1-5)</th>
<th>Rating Design 3</th>
<th>Rating Design 2</th>
<th>Rating Design 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Adjusting</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Operation</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Mechanical Advantage</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>User Friendliness</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Corrosion Protection</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Complexity</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Manufacture</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Product Life</td>
<td>2</td>
<td>7</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Effectiveness</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Calculations</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Total Score</td>
<td>77/110</td>
<td>54/110</td>
<td>47/110</td>
<td>47/110</td>
</tr>
</tbody>
</table>

Material Selection Process

Figures D2 and D3 illustrate in diagrammatic form the material selection process undertaken by the author. For the redesign, mechanical factors for the material such as stiffness, tensile strength, yield strength, fatigue strength, and impact strength are crucially important in selecting the most suitable material. Environmental factors are also important also as this component is placed in an exposed environment where salt laden air is present with moisture, which can cause a significant amount of corrosion on certain materials if not properly treated or designed for. The material cost and availability is also an important consideration for this design.
Extreme Weather Conditions
Novel Tie-Down System for Ship to Shore Cranes

Figure D2 Diagrammatic image showing important material properties [29]

Figure D3 Material Selection and Elimination [29]
Photoelasticity Experimental Testing

2 Stress Fringes (138.3N Load)

3 Stress Fringes (234N Load)

4 Stress Fringes (326.4N Load)

5 Stress Fringes (436N Load)
Prototype Development

Figure D4 Manufactured Prototype Top Link and Bearing Plates - B.Hand 2014

Figure D5 Manufactured Prototype Turnbuckle - B.Hand 2014

Figure D6 Prototype Assembly – insertion of Top link in Turnbuckle - B.Hand 2014
Figure D7 Orientation of Strain Gauges for prototype testing B.Hand 2014

Figure D8 Axially loaded strain gauge results B.Hand 2014

Figure D9 Transverse loaded strain gauge results B.Hand 2014
The research and analysis undertaken by the author contributes most positively to the current research and development activities and initiatives at Liebherr - including new crane designs encompassing double boom technology designed to dramatically improve productivity. (See Figure D10 - Photo taken of commissioned Double Boom STS Crane at Port of Nemrut Bay, Turkey 2013)
Extreme Weather Conditions
Novel Tie-Down System for
Ship to Shore Cranes

Dimensions

STS Model Designation
P 210 L (WS) / (GS)
AC / DC Drive
Lattice Structure for Main Beam
Outreach Length in Feet
Portal Type Structure

** Typical Quayside Crane **

- **A Gantry Span**: 15.00 - 35.00m
- **C Backreach**: 0.00 - 25.00m
- **E Clearance Under Sill Beam**: 12.00 - 18.00m
- **G Travel Wheel Gauge**: 18.20m
- **H Buffer to Buffer**: 27.00m
- **Wheel Spacing**: 1.00 - 2.00m
- **Wheels per Comer**: 6 / 12 - Seaside
- **Wheels per Comer**: 6 / 12 - Landside
- **Max. Width Trolley & Main Beam/Boom**: 7.60m

** Dependant on Required Wheel Loads

** Typical Feeder - Panamax Crane **

- **B Outreach**: 30.00 - 40.00m
- **D Lift Height**: 24.00 - 30.00m
- **SWL Capacity**: 40/50T Single - 65T Twin
- **Hoisting Speed**: 50 / 125 m/min
- **Trolley Speed**: 150 - 180 m/min
- **Travel Speed**: 45 m/min
- **Wheel Load**: 30 - 45T Per Meter

** Based on 8 Wheels per Comer at 1.00m Spacing

** Typical WideSpan Crane **

- **A Gantry Span**: 35.00 - 50.00m
- **B Outreach**: 30.00 - 40.00m
- **C Backreach**: 15.00 - 30.00m
- **D Lift Height**: 20.00 - 25.00m
- **SWL Capacity**: 40/50T Single - 65T Twin
- **Hoisting Speed**: 50 / 125 m/min
- **Trolley Speed**: 180 m/min
- **Travel Speed**: 100 - 140 m/min
- **Wheel Load per Meter**: 40 - 50T Per Meter

** Based on 8 Wheels per Comer at 1.00m Spacing

** Typical Design Parameters **

- **Classification according F.E.M.**: U7-Q2-A7
- **In service wind Speed**: 72km/h (20m/s)
- **Out of service wind Speed**: 151.2km/h (42m/s)
- **Ambient Temperature Range**: -40°C to +50°C
- **Frequency**: 50Hz to 60Hz
- **Voltage**: 3.3kV to 20kV

** Other Features, Dimensions and Design Parameters Also Available

** Typical Post Panamax Crane **

- **B Outreach**: 40.00 - 45.00m
- **D Lift Height**: 30.00 - 35.00m
- **SWL Capacity**: 40/50T Single - 65T Twin
- **Hoisting Speed**: 60 / 150 m/min
- **Trolley Speed**: 180 - 210 m/min
- **Travel Speed**: 45 m/min
- **Wheel Load**: 40 - 55T Per Meter

** Based on 8 Wheels per Comer at 1.00m Spacing

** Typical Super Post Panamax / Megamax **

- **B Outreach**: 46.00 - 70.00m
- **D Lift Height**: 35.00 - 40.00m
- **SWL Capacity**: 65T Twin - 80T Tandem
- **Hoisting Speed**: 70 / 175 m/min
- **Trolley Speed**: 210 - 240 m/min
- **Travel Speed**: 45 m/min
- **Wheel Load**: 60 - 80T Per Meter

** Based on 8 Wheels per Comer at 1.00m Spacing