CORK INSTITUTE OF TECHNOLOGY INSTITIÚID TEICNEOLAÍOCHTA CHORCAÍ

Semester 2 Examinations 2009/10

Module Title: Introduction to Structural Design

Module Code: CIVL6020

School: Building and Civil

Programme Title: Bachelor of Engineering in Civil Engineering – Year 2

Programme Code: CCIVL_7_Y2

External Examiner(s): Ms. M. Kyne, Mr. J. Murphy Internal Examiner(s): Mr. T. McKenna, Ms. S. Corcoran

Instructions: Answer <u>ALL</u> questions from each section Use separate answer books for each section

Duration: 2 Hours

Sitting: Summer 2010

Requirements for this examination:

Candidates may refer to

- 1. 'Approved Design Aids' (CIT Booklet)
- 3. 'Designed & Detailed' (BCA Booklet)

Note to Candidates: Please check the Programme Title and the Module Title to ensure that you have received the correct examination paper.

If in doubt please contact an Invigilator.

Section A – Reinforced Concrete

Q.A1 Reinforced Concrete Beam

(Total 50 Marks)

(10 marks)

Figure Q.A1, details the slab, beam and column layout of a reinforced concrete structure. **Design and prepare a detailed reinforcement drawing for the simply supported rectangular beam along gridline 3.** Beam dimensions are as follows: b=300mm; h=450mm.

- (i) Determine the maximum design actions on the beam
- (ii) Design the simply supported beam along grid line 3 (35 marks) *Note: No verification for Crack Control is required*
- (iii) Prepare a reinforcement drawing for the beam designed in section A1. (i & ii) (5 marks)
 Use the attached General Arrangement drawing to complete the detailed reinforcement drawing and include the completed drawing with your Answer Book.

Design Information for Q.A1:

Actions on the Structure:

Perman	nent Actions:			
	Specific weight of reinforced concrete	= 25 k	N/m^3	
	Weight of suspended ceiling & services	= 0.6	kN/m ²	
	Blockwork wall (2.5m height on all beams)	= 2.5]	kN/m ² o	f wall area
Variab	le Actions:			
	Occupancy: Specific Use is 'Office'	= 3.0	kN/m ²	
	Weight of removable partitions/fittings	= 1.0	kN/m ²	
<u>Materials:</u>	Maximum Aggregate size:		d_{g}	= 20mm
	Characteristic yield strength of steel reinforcement:		f_{yk}	= 500 MPa
	Characteristic cylinder strength of Concrete:		f_{ck}	= 30 MPa
	Characteristic cube strength of Concrete:		$f_{\it ck, cube}$	= <i>37 MPa</i>

(Cube Strength applies to Repeat Students designing to BS8110)

Cover: Nominal Cover:

$$c_{nom} = 25mm$$

Section A: Additional Information

Additional Relevant Extracts from I.S. EN1992-1-1

9.2 Beams

9.2.1 Longitudinal reinforcement

9.2.1.1 Minimum and maximum reinforcement areas

(1) The area of longitudinal tension reinforcement should not be taken as less than $A_{s,min}$

Note 1: See also 7.3 for area of longitudinal tension reinforcement to control cracking.

Note 2: The recommended value of A_{s,min} is given in the following:

 $A_{s \min} = \frac{0.26 f_{ctm} b_t d}{f_{vk}} \ge 0.0013 b_t d$ (Exp. 9.1N)

Where:

 b_t denotes the mean width of the tension zone; f_{ctm} should be determined with respect to the relevant strength class according to Table 3.1.

(3) The cross-sectional area of tension or compression reinforcement should not exceed $A_{s,\text{max}}$ outside lap locations.

Note: The recommended value of A_{s.max} for beams is 0,04A_c

9.2.1.2 Other detailing arrangements

(1) In monolithic construction, even when simple supports have been assumed in design, the section at supports should be designed for a bending moment arising from partial fixity of at least β_1 of the maximum bending moment in the span.

Note 1: From Irish National Annex, $\beta_1 = 0.25$

Note 2: The minimum area of longitudinal reinforcement section defined in 9.2.1.1 (1) applies.

(3) Any compression longitudinal reinforcement (diameter ϕ) which is included in the resistance calculation should be held by transverse reinforcement with spacing not greater than 15 ϕ .

9.2.2 Shear reinforcement

(6) The maximum longitudinal spacing between shear assemblies should not exceed $s_{l,max}$. $s_{l,max} = 0.75d (1 + \cot \alpha)$ (Exp 9.6N)

where α is the inclination of the shear reinforcement to the longitudinal axis of the beam.

(8) The transverse spacing of the legs in a series of shear links should not exceed $s_{t,max}$: $s_{t,max} = 0.75d \leq 600 \text{ mm}$ (Exp 9.8N)

Simplified Rules of Curtailment

These following simplified rules of curtailment may be applied where:

- a) For beams designed predominantly for Uniformly Distributed Loads (u.d.l's)
- b) In the case of continuous beams, when the spans are approximately equal (not varying by more than 15%)

Anchorage & Lap Lengths

Concrete Cla	ass C30/37										
		Bond	Reinfo	orcemen	t in Tens	ion, bar d	iameter, 🕯	Ø (mm)			Reinforcement in
		Conditions	8	10	12	16	20	25	32	40	Compression
Anchorage	Straight Bars Only	Good	210	280	360	530	690	900	1150	1560	36Ø
length, I _{bd}		Poor	290	400	520	750	990	1280	1640	2230	51Ø
	Other Bars	Good	290	360	430	580	720	900	1150	1560	36Ø
		Poor	410	520	620	820	1030	1280	1640	2230	51Ø
Lap	50% Lapped in one	Good	290	390	510	740	970	1260	1610	2180	50Ø
Length, I₀	location ($\alpha_6 = 1.4$)	Poor	410	560	720	1050	1380	1790	2290	3110	72Ø
	100% Lapped in one	Good	310	420	540	790	1040	1350	1720	2340	54Ø
	location ($\alpha_6 = 1.5$)	Poor	430	600	780	1130	1480	1920	2460	3340	77Ø

For Students Repeating Exam Only

Section A: Additional British Standard Information

Additional Relevant Extracts from B.S. 8110

Flexure Design $K = \frac{M}{f_{cu}bd^2}$	
$If K < K'$ $Z = d\left(0.5 + \sqrt{0.25 - \frac{K}{0.9}}\right)$ $A_{s} = \frac{M}{0.95f_{y}z}$	$If K > K'$ $z = d \left(0.5 + \sqrt{0.25 - \frac{K'}{0.9}} \right)$ $A's = \frac{\left(K - K' \right) f_{cu} b d^{2}}{0.95 f_{y} \left(d - d' \right)}$ $A_{s} = \frac{K' f_{cu} b d^{2}}{0.95 f_{y} z} + A's$
Shear Design $\upsilon = \frac{V}{b_V d}$	$\frac{A_{SV}}{S_V} = \frac{b(v - v_c)}{0.95f_{yV}}$

$\frac{100A_{\rm S}}{b_{\rm V}d}$	Effective	depth	- 1					
	125	150	175	200	225	250	200	2 100
er (*	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	≥ 400 N/mm ²
≤ 0.15	0.45	0.43	0.41	0.40	0.39	0.38	0.36	0.34
0.25	0.53	0.51	0.49	0.47	0.46	0.45	0.30	0.40
0.50	0.67	0.64	0.62	0.60	0.58	0.56	0.54	0.40
0.75	0.77	0.73	0.71	0.68	0.66	0.65	0.62	0.50
1.00	0.84	0.81	0.78	0.75	0.73	0.71	0.68	0.62
1.50	0.97	0.92	0.89	0.86	0.83	0.81	0.78	0.05
2.00	1.06	1.02	0.98	0.95	0.92	0.89	0.86	0.72
≥ 3.00	1.22	1.16	1.12	1.08	1.05	1.02	0.00	0.00
NOTE 1. All NOTE 2. The $0.79 \{100A_{\rm s}/(b_{\rm s}), (b_{\rm s}), ($	wance has been values in the tr $b_{\rm v}d$ $\frac{3}{4}$ (400/d) $\frac{4}{4}$ uld not be taken	n made in these able are derived /ym n as greater tha	e figures for a) I from the expr n 3;	'm of 1.25. ression:				
$\frac{400}{d}$ should	l not be taken a ristic concrete s	s less than 1. trengths greate	r than 25 N/mm	n^2 , the values in	this table may	he multiplied	NY (6 825) 1/2 175	

rectangular or flanged beams								
Support conditions	Rectangular sections	Flanged beams with $\frac{b_{\rm W}}{b} \le 0.3$						
Cantilever	7	5.6						
Simply supported	20	16.0						
Continuous	26	20.8						

Service stress	M/bd ²											
	0.50	0.75	1.00	1.50	2.00	3.00	4.00	5.00	6.00			
100	2.00	2.00	2.00	1.86	1.63	1.36	1.19	1.08	1.01			
150	2.00	2.00	1.98	1.69	1.49	1.25	1.11	1.01	0.94			
$(f_y = 250)$ 167	2.00	2.00	1.91	1.63	1.44	1.21	1.08	0.99	0.92			
200	2.00	1.95	1.76	1.51	1.35	1.14	1.02	0.94	0.88			
250	1.90	1.70	1.55	1.34	1.20	1.04	0.94	0.87	0.82			
300	1.60	1.44	1.33	1.16	1.06	0.93	0.85	0.80	0.76			
$(f_{\rm y} = 460) 307$	1.56	1.41	1.30	1.14	1.04	0.91	0.84	0.79	0.76			

NOTE 1. The values in the table derive from the equation: Modification factor = $0.55 + \frac{(477 - f_s)}{120 \left(0.9 + \frac{M}{bd^2}\right)} \le 2.0$ equation 7

M is the design ultimate moment at the centre of the span or, for a cantilever, at the support.

NOTE 2. The design attained moment at the tension reinforcement in a member may be estimated from the equation: $f_{\rm S} = \frac{2f_{\rm V}A_{\rm S} \, {\rm reg}}{3A_{\rm S} \, {\rm prov}} \times \frac{1}{f_{\rm D}}$ equation 8 NOTE 3. For a continuous beam, if the percentage of redistribution is not known but the design ultimate moment at mid-span is obviously the same as or greater than the elastic ultimate moment, the stress $f_{\rm S}$ in this table may be taken as $2/3f_{\rm Y}$

$100 \frac{A'_{s \text{ prov}}}{bd}$	Factor
0.00	1.00
0.15	1.05
0.25	1.08
0.35	1.10
0.50	1.14
0.75	1.20
1.0	1.25
1.5	1.33
2.0	1.40
2.5	1.45
≥ 3.0	1.50
NOTE 1. The values in the equation: Modification factor for c $1 + \frac{100A's \text{ prov}}{bd} / (3 + \frac{1}{2})$ NOTE 2. The area of contable may include all bar not effectively tied with	his table are derived from the following ompression reinforcement = $\frac{100A'_{5} \text{ prov}}{bd} \le 1.5$ equation 9 mpression reinforcement A used in this s in the compression zone, even those links.

SECTION B

A column is being subjected to the unfactored axial loading as shown in Fig QB1.

LOADING

F₁: $G_k = 75kN$

 $Q_k = 175 kN$

 $\mathbf{F_2:} \quad \mathbf{G_k} = 20 \mathrm{kN}$

 $Q_k = 75kN$

Note: Allow 1kN/m for the column self wt.

TO DO:

B1.	Determine the load the column is being subjected to	(6 marks)
B2.	Determine whether a 203 UC71 is adequate to take the loads.	(44 marks)
	Note: the floor beams provide directional restraint at the top of the c	column, the foundation is a pin

TABLES from BS5950

Section 3. Properties of materials and section properties

3.1 Structural steel

3.1.1 Design strength

This standard covers the design of structures fabricated from structural steels conforming to the grades and product standards specified in BS 5950-2. If other steels are used, due allowance should be made for variations in properties, including ductility and weldability.

The design strength p_y should be taken as $1.0Y_s$ but not greater than U_s /1.2 where Y_s and U_s are respectively the minimum yield strength R_{eH} and the minimum tensile strength R_m specified in the relevant product standard. For the more commonly used grades and thicknesses of steel from the product standards specified in BS 5950-2 the value of p_v may be obtained from Table 9. Alternatively, the values of R_{eH} and R_m may be obtained from the relevant product standard.

NOTE Additional requirements apply where plastic analysis is used, see 5.2.3.

Table 9 — Design strength p_y

Steel grade	Thickness ^a less than or equal to	Design strength p_y
	mm	N/mm ²
S 275	16	275
	40	265
	63	255
	80	245
	100	235
	150	225
S 355	16	355
	40	345
	63	335
	80	325
	100	315
	150	295
S 460	16	460
	40	440
	63	430
	80	410
	100	400
a For rolled sections, use the spectrum.	ecified thickness of the thickest element of the cross-s	ection.

3.1.2 Notch toughness

The notch toughness of the steel, as quantified by the Charpy impact properties, should conform to that for the appropriate quality of steel for avoiding brittle fracture, see 2.4.4.

.

© BSI 05-2001

Г

		cinent	natio		Limiting value ^D			
				Class 1 plastic	Class 2 compact	Class 3 semi-compact		
Outstand elem	nent of	Rolled section	b/T	9 <i>ε</i>	10ε	156		
compression n	lange	Welded section	b/T	88	9 <i>ɛ</i>	13ε		
Internal eleme	ent of ange	Compression due to bending	b/T	28 <i>ε</i>	28ε 32ε			
		Axial compression	b/T	Not applicat	ole			
Web of an I-,	Neutral axis a	it mid-depth	d/t	80 <i>E</i>	100ε	120ε		
section ^c	H- or box section ^c Generally ^d		d/t		$\frac{100\varepsilon}{1+r_1}$			
		If r_1 is positive:	d/t	$\frac{80\varepsilon}{1+r_1}$ but $\ge 40\varepsilon$	$\frac{100\varepsilon}{1+1.5r_1}$ but $\ge 40\varepsilon$	$\frac{120\varepsilon}{1+2r_2}$ but > 40\varepsilon		
	Axial compress	sion ^d	d/t	Not applicab	le			
Web of a chann	nel		d/t	40 <i>ε</i>	40ε	40 <i>ε</i>		
Angle, compres	ssion due to ber	iding	b/t	9E	10ε	15 <i>ε</i>		
(Both criteria s	should be satisf	ied)	d/t	9ε	10ε	15 <i>ɛ</i>		
Single angle, or components sep (All three criter	r double angles parated, axial c ria should be sa	with the ompression utisfied)	b/t d/t $(b + d)/t$	Not applicab	15ε 15ε 24ε			
Outstand leg of back-to-back in	f an angle in co a double angle	ntact e member	b/t	9 <i>E</i>	10ε	15e		
Outstand leg of continuous cont	f an angle with tact with anoth	its back in er component						
Stem of a T-sec I- or H-section	tion, rolled or c	ut from a rolled	D/t	8 <i>E</i>	9 <i>ɛ</i>	18ε		
 a Dimensions b, D, dimensions, wher or its minor axis, b The parameter ε c For the web of a 1 d The stress ratios 	d, T and t are define re the distinction best as a state of the set of the s	ned in Figure 5. For a boy etween webs and flanges puld be based on the desig ed in 3.5.5 .	x section b and T ai depends upon whe gn strength p _{yf} of t	re flange dimensi ther the box sect he flanges.	ons and <i>d</i> and ion is bent abo	t are weh ut its major axis		

Table 11 — Limiting width-to-thickness ratios for sections other than CHS and RHS Compression element Ratio^a Limiting value^b

12

© BSI 05-2001

÷.,

.

T

Table 23 — Allocation of strut curve

Type of section	Maximum thickness (see note 1)	Axis	of buckling
	(see note I)		
Hot-finished structural hollow section		a)	a)
Cold-formed structural hollow section		c)	c)
Rolled I-section	$\leq 40 \text{ mm}$	a)	b)
	>40 mm	b)	c)
Rolled H-section	≤40 mm	b)	c)
	>40 mm	c)	d)
Welded I or H-section (see note 2 and 4.7.5)	≤40 mm	b)	c)
	>40 mm	b)	d)
Rolled I-section with welded flange cover plates with	≤40 mm	a)	b)
0.25 < U/B < 0.8 as shown in Figure 14a)	>40 mm	b)	c)
Rolled H-section with welded flange cover plates with	≤40 mm	b)	c)
0.25 < U/B < 0.8 as shown in Figure 14a)	>40 mm	c)	d)
Rolled I or H-section with welded flange cover plates with	≤40 mm	b)	a)
$U/B \ge 0.8$ as shown in Figure 14b)	>40 mm	c)	b)
Rolled I or H-section with welded flange cover plates with	≤40 mm	b)	c)
$U/B \leq 0.25$ as shown in Figure 14c)	>40 mm	b)	d)
Welded box section (see note 3 and 4.7.5)	≤40 mm	b)	b)
	>40 mm	c)	c)
Round, square or flat bar	≤ 40 mm	b)	b)
	>40 mm	c)	c)
Rolled angle, channel or T-section		Any axis	: c)
Two rolled sections laced, battened or back-to-back			
Compound rolled sections			
NOTE 1 For thicknesses between 40 mm and 50 mm the value of p_c may	oe taken as the aver	age of the valu	ies for thicknesse
up to 40 mm and over 40 mm for the relevant value of p_y .			
NOTE 2 For welded I or H-sections with their flanges thermally cut by m machining, for buckling about the y-y axis, strut curve b) may be used for fl flanges over 40 mm thick.	achine without subs anges up to 40 mm	equent edge g thick and stru	rinding or t curve c) for
NOTE 3 The category "welded box section" includes any box section fabric	ated from plates or :	rolled sections	, provided that al

NOTE 3 The category "welded box section" includes any box section fabricated from plates or rolled sections, provided that all of the longitudinal welds are near the corners of the cross-section. Box sections with longitudinal stiffeners are NOT included in this category.

.

Γ

84

Section 4

					3)	Values	of $p_{\rm c}$ (N	/mm²)	with $\lambda <$	110 for	strut c	urve b				
	λ					S	teel gra	de and	design	strengt	h <i>p</i> _y (N/	mm²)				
				S 275	, 				S 355					S 460)	
L		235	245	255	265	275	315	325	335	345	355	400	410	430	440	460
	15	235	245	255	265	275	315	325	335	345	355	399	409	428	438	457
	20	234	243	253	263	272	310	320	330	339	349	391	401	420	429	448
	20	229	239	248	258	267	304	314	323	332	342	384	393	411	421	439
	30	225	234	243	253	262	298	307	316	325	335	375	384	402	411	429
	30	220	229	238	247	256	1291	300	309	318	327	366	374	392	400	417
	40	216	224	233	241	250	284	293	301	310	318	355	364	380	388	404
	42	213	222	231	239	248	281	289	298	306	314	351	359	375	383	399
	44	21 1	220	228	237	245	278	286	294	302	310	346	354	369	377	392
	46	209	218	226	234	242	275	283	291	298	306	341	349	364	371	386
	48	207	215	223	231	239	271	279	287	294	302	336	343	358	365	379
	50	205	213	221	229	237	267	275	283	290	298	330	337	351	358	379
	52	203	210	218	226	234	264	271	278	286	293	324	331	344	351	364
	54	200	208	215	223	230	260	267	274	281	288	318	325	337	344	356
	56	198	205	213	220	227	256	263	269	276	283	312	318	330	336	347
	58	195	202	210	217	224	252	258	265	271	278	305	311	322	328	339
.	30	193	200	207	1214	991	247	254	960	266	070	1000				
	32	190	197	204	210	217	243	204	255	200	212	298	1304	314	320	330
	34	187	194	200	207	213	238	240	249	255	200	291	290	306	311	320
	56	184	191	197	203	210	233	239	243	249	255	204	209	290	302	311
•	38	181	188	194	200	206	228	233	239	244	249	269	273	281	285	292
	70	178	185	190	196	20.2	000	999	000	0.90	0.40	0.01	0.0-			
	12	175	181	187	193	198	919	220	200	200	242	261	265	272	276	282
	74	179	178	183	180	104	910	220	221	202	230	254	207	264	267	278
	16	169	175	180	185	100	210	010	010	220	230	246	249	200	258	264
7	78	166	171	176	181	186	203	206	210	220	223	238	241 234	239	250 241	255 246
							ĺ				ļ	ł				
0		163	168	172	177	181	197	201	204	208	211	224	226	231	233	237
	4	100	164	169	178	177	192	196	199	202	205	217	219	223	225	229
с с	4	156	161	165	169	173	187	190	193	196	199	210	212	216	218	221
c g	8	150	154	159	165	169	182	185	188	190	193	203	205	208	210	213
	0	100	194	100	101	165	111	180	182	195	187	196	198	201	203	206
g	0	146	150	154	157	161	172	175	177	179	181	190	192	195	196	199
9	2	143	147	150	153	156	167	170	172	174	176	184	185	188	189	192
9	4	140	143	147	150	152	162	165	167	169	171	178	179	182	183	185
9	6	137	140	143	146	148	158	160	162	164	165	172	173	176	177	179
9	8	134	137	139	142	145	153	155	157	159	160	167	168	170	171	173
10	0	130	133	136	138	141	149	151	152	154	155	161	162	164	165	167
10	2	127	130	132	135	137	145	146	148	149	151	156	157	159	160	162
10	4	124	127	129	131	133	141	142	144	145	146	151	152	154	155	156
10	6	121	124	126	128	130	137	138	139	141	142	147	148	149	150	151
10	8	118	121	123	125	126 (133	134	135	137	138	142	143	144	145	147

.

Table 24 — Compressive strength $p_{\rm c}$ (N/mm²) (continued)

© BSI 05-2001

)

1

4) Values of p_c (N/mm ²) with $\lambda \ge 110$ for strut curve b																
λ		Steel grade and design strength p_y (N/mm ²)														
			S 275					S 355			S 460					
	235	245	255	265	275	315	325	335	345	355	400	410	430	440	460	
110	115	118	120	121	123	129	130	131	133	134	138	139	140	141	142	
112	113	115	117	118	120	125	127	128	129	130	134	134	136	136	138	
114	110	112	114	115	117	122	123	124	125	126	130	130	132	132	133	
116	107	109	111	112	114	119	120	121	122	122	126	126	128	128	129	
118	105	106	108	109	111	115	116	117	118	119	122	123	124	124	125	
190	100	104	105	107	100	110	1110	114		110	110	110	100	101	100	
120	102	104	103	107	108	100	110	114	115	110	119	119	120	121	122	
122	07	101	100	104	100	109	107	111	112	100	110	110	117	117	110	
124	95	96	08	00	102	103	107	105	109	109	100	100	110	114	115	
128	93	94	95	96	97	100	104	102	100	103	105	105	107	107	108	
120	00		50			101	101	102	105	100	100	100	107	107	100	
130	90	92	93	94	95	98	99	99	100	101	103	103	104	105	105	
135	85	86	87	88	89	92	93	93	94	94	96	97	97	98	98	
140	80	81	82	83	84	86	87	87	88	88	90	90	91	91	92	
145	76	77	78	78	79	81	82	82	83	83	84	85	85	86	86	
150	72	72	73	74	74	76	77	77	78	78	79	80	80	80	81	
155	68	69	69	70	70	72	72	73	73	73	75	75	75	76	76	
160	64	65	65	66	66	68	68	69	69	69	70	71	71	71	72	
165	61	62	62	62	63	64	65	65	65	65	66	67	67	67	68	
170	58	58	59	59	60	61	61	61	62	62	63	63	63	64	64	
175	55	55	56	56	57	58	58	58	59	59	60	60	60	60	60	
						1										
180	52	53	53	53	54	55	55	65	56	56	56	57	57	57	57	
185	50	50	51	51	51	52	52	53	53	53	54	54	54	54	54	
190	48	48	48	48	49	50	50	50	50	50	51	51	51	51	52	
195	45	46	46	46	46	47	47	48	48	48	49	49	49	49	49	
200	43	44	44	44	44	45	45	45	46	46	46	46	47	47	47	
210	40	40	40	40	41	41	41	41	42	42	42	42	42	43	43	
220	36	37	37	37	37	38	38	38	38	38	39	39	39	39	39	
230	34	34	34	34	34	35	35	35	35	35	35	36	36	36	36	
240	31	31	31	31	32	32	32	32	32	32	33	33	33	33	33	
250	29	29	29	29	29	30	30	30	30	30	30	30	30	30	30	
260	07	07	97	97	97	97	0.0	00	00		90	00		0.0		
200	21	21	21	21	21 95	21	20	28	28	20	20	28	28	28	20 90	
210	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	
200	20	20	20	20	29	29	24 99	29	24	29	24	24	24	24	23 93	
300	20	20	21	21	21	21	21	21	21	21	20	21	20	21	21	
~~~		<b>_</b>				<b></b>		~1	<i>•</i> ••		<b>`</b>	<i>#</i> 1	<i>*</i> 1	-		
310	19	19	19	19	19	20	20	20	20	20	20	20	20	20	20	
320	18	18	18	18	18	18	18	19	19	19	19	19	19	19	19	
330	17	17	17	17	17	17	17	17	17	18	18	18	18	18	18	
340	16	16	16	16	16	16	16	16	17	17	17	17	17	17	17	
350	15	15	15	15	15	16	16	16	16	16	16	16	16	16	16	
					- 1											

Table 24 — Compressive strength  $p_{\rm c}$  (N/mm²) (continued)

© BSI 05-2001

.

Section 4

			Tar	ole 24 ·	- Con	ipress	sive st	rengu	$p_{c}$ (iv	/11111-)	(conn	nueu)			
				5)	Values o	of $p_c$ (N	/mm²) v	∕ith λ <	110 for	strut cı	irve c				
λ					St	eel grac	le and c	lesign s	trength	г р _у (N/л	1m²)				
			S 275					S 355		S 460					
	235	245	255	265	275	315	325	335	345	355	400	410	430	440	460
15	235	245	255	265	275	315	325	335	345	355	398	408	427	436	455
20	233	242	252	261	271	308	317	326	336	345	387	390	414	124	492
25	226	235	245	254	263	299	308	317	326	335	375	384	402	410	420
30	220	228	237	246	255	289	298	307	315	324	303	077	274	0.00	207
35	213	221	230	238	247	280	288	296	305	313	349	301	1314	362	357
40	206	214	222	230	238	270	278	285	293	301	335	343	358	365	380
42	203	211	219	227	235	266	273	281	288	296	329	337	351	358	373
44	200	208	216	224	231	261	269	276	284	291	323	330	344	351	365
46	197	205	213	220	228	257	264	271	279	286	317	324	337	344	357
48	195	202	209	217	224	253	260	267	274	280	311	317	330	337	349
													0.00	000	
50	192	199	206	213	220	248	255	262	268	275	304	1310	323	329	041
52	189	196	203	210	217	244	250	257	263	270	297	303	315	321	224
54	186	193	199	206	213	239	245	252	258	264	291	290	200	205	315
56	183	189	196	202	209	234	240	246	252	298	1204	209	909	207	306
58	179	186	192	199	205	229	235	241	247	252	211	202	292	251	500
60	176	183	189	195	201	225	230	236	241	247	270	274	284	289	298
62	173	179	185	191	197	220	225	230	236	241	262	267	276	280	289
64	170	176	182	188	193	215	220	225	230	235	255	260	268	272	280
66	167	173	178	184	189	210	215	220	224	229	248	252	260	264	271
68	164	169	175	180	185	205	210	214	219	223	241	245	252	256	262
			1												054
70	161	166	171	176	181	200	204	209	213	217	234	238	244	248	254
72	157	163	168	172	177	195	199	203	207	211	227	231	237	240	240
74	154	159	164	169	173	190	194	198	202	205	220	223	229	232	200
76	151	156	160	165	169	185	189	193	196	200	1214	217	222	220	200
78	148	152	157	161	165 .	1180	184	187	191	194	207	210	210	217	200
80	145	149	153	157	161	176	179	182	185	188	201	203	208	210	215
82	142	146	150	154	157	171	174	177	180	183	195	197	201	203	207
84	139	142	146	150	154	167	169	172	175	178	189	191	195	197	201
86	135	139	143	146	150	162	165	168	170	173	183	185	189	190	194
88	132	136	139	143	146	158	160	163	165	168	177	179	183	184	187
				1					1.00			1.70	177	179	181
90	129	133	136	139	142	153	156	158	161	163	172	173	1.7.	179	174
92	126	130	133	136	139	149	152	154	156	158	100	168	186	167	170
94	124	127	130	133	135	145	147	149	101	153	156	159	160	189	164
96	121	124	127	129	132	141	143	145	147	149	151	159	155	157	159
98	118	121	123	126	129	1137	139	141	143	145	101	103	1.00	101	105
100	115	118	120	123	125	134	135	137	139	140	147	148	151	152	154
102	113	115	118	120	122	130	132	133	135	136	143	144	146	147	149
04	110	112	115	117	119	126	128	130	131	133	138	139	142	142	144
106	107	110	112	114	116	123	125	126	127	129	134	135	137	138	140
108	105	107	109	111	113	120	121	123	124	125	130	131	133	134	136

٠

86

© BSI 05-2001

L					values	or $p_{\rm c}$ (N	/mm²)	with λ≥	110 for	strut e	urve c					
λ		Steel grade and design strength $p_y$ (N/mm ² )														
ļ	S 275					∥		S 355			S 460					
	235	245	255	265	275	315	325	335	345	355	400	410	430	440	460	
1110	102	104	106	108	110	116	118	119	120	122	126	127	129	130	132	
112	100	102	104	106	107	113	115	116	117	118	123	124	125	126	128	
114	98	100	101	103	105	110	112	113	114	115	119	120	122	123	124	
110	95	97	99	101	102	108	109	110	111	112	116	117	118	119	120	
110	93	90	91	98	100	105	106	107	108	109	113	114	115	116	117	
120	91	93	94	96	97	102	103	104	105	106	110	110	112	112	113	
122	89	90	92	93	95	99	100	101	102	103	107	107	109	109	110	
124	87	88	90	91	92	97	98	99	100	100	104	104	106	106	107	
126	85	86	88	89	90	94	95	96	97	98	101	102	103	103	104	
128	83	84	86	87	88	92	93	94	95	95	98	99	100	100	101	
130	81	82	84	85	90	00	01	0.	00							
135	77	78	79	80	91	1 90	91	91	92	93	96	96	97	98	99	
140	72	74	75	76	76	70	80	00	01	87	90	90	91	92	92	
145	69	70	71	71	72	75	76	76	01	82	84	85	85	86	87	
150	65	66	67	68	68	71	71	72	79	72	75	75	20	81	81	
							11	12	12	10	10	10	10	76	76	
155	62	63	63	64	65	67	67	68	68	69	70	71	71	72	72	
160	59	59	60	61	61	63	64	64	65	65	66	67	67	67	68	
165	56	56	57	58	58	60	60	61	61	61	63	63	64	64	64	
170	53	54	54	55	55	57	57	58	58	58	60	60	60	60	61	
175	51	51	52	52	53	54	54	55	55	55	56	57	57	57	58	
180	48	49	49	50	50	51	52	-59	59	52	54	EA	5.4	r 4		
185	46	46	47	47	48	49	49	50	50	50	51	51	04 50	04 59	00 50	
190	44	44	45	45	45	47	47	47	47	48	19	10	10	10	02 40	
195	42	42	43	43	43	45	45	45	45	45	46	46	40	45	49	
200	40	41	41	41	42	43	43	43	43	43	44	44	45	45	45	
										Í	i					
210	37	37	38	38	38	39	39	39	40	40	40	40	41	41	41	
220	34	34	35	35	35	36	36	36	36	36	37	37	37	37	38	
230	31	32	32	32	32	33	33	33	33	34	34	34	34	34	35	
240	29	29	30	30	30	30	31	31	31	31	31	31	32	32	32	
290	27	27	27	28	28	28	28	28	29	29	29	29	29	29	29	
260	25	25	26	26	26	26	26	26	27	27	27	97	97	97	97	
270	23	24	24	24	24	24	25	25	25	25	25	25	25	25	25	
280	22	22	22	22	22	23	23	23	23	23	23	24	24	24	20	
290	21	21	21	21	21	21	21	22	22	22	22	22	22	22	22	
300	19	19	20	20	20	20	20	20	20	20	21	21	21	21	21	
								ļ								
310	18	18	18	19	19	19	19	19	19	19	19	19	19	19	20	
330	16	16	12	17	18	12	18	18	18	18	18	18	18	18	18	
240	15	15	10	16	17	17	17	17	17	17	17	17	17	17	17	
250	15	10	10	10	10	16	16	16	16	16	16	16	16	16	16	
000	10	10	19	10	12	15	15	15	15	15	15	15	15	15	15	

Table 24 — Compressive strength  $p_{\rm c}$  (N/mm²) (continued)

© BSI 05-2001

.